Spaces:
Runtime error
Runtime error
File size: 1,306 Bytes
533ec74 1d6f190 533ec74 1d6f190 533ec74 f457f25 9d3068f 33cfa6a 533ec74 1d6f190 5e24655 1d6f190 33cfa6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import requests
import tensorflow as tf
inception_net = tf.keras.applications.MobileNetV2()
import requests
response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")
title = "Image Classifier Three -- Keras Mobile Net"
description = """This machine has vision. It can see objects and concepts in an image. To test the machine, upload or drop an image, submit and read the results. The results comprise a list of words that the machine sees in the image. Beside a word, the length of the bar indicates the confidence with which the machine sees the word. The longer the bar, the more confident the machine is.
"""
article = "This app was made by following [this Gradio guide](https://gradio.app/image_classification_in_tensorflow/)."
def classify_image(inp):
inp = inp.reshape((-1, 224, 224, 3))
inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp)
prediction = inception_net.predict(inp).flatten()
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
return confidences
import gradio as gr
gr.Interface(fn=classify_image,
inputs=gr.inputs.Image(shape=(224, 224)),
outputs=gr.outputs.Label(num_top_classes=3),
title=title,
description=description,
article=article).launch() |