import tensorflow as tf import requests import gradio as gr inception_net = tf.keras.applications.MobileNetV2() response = requests.get("https://git.io/JJkYN") labels = response.text.split("\n") def classify_image(inp): inp = inp.reshape((-1, 224, 224, 3)) inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp) prediction = inception_net.predict(inp).flatten() confidences = {labels[i]: float(prediction[i]) for i in range(1000)} return confidences gr.Interface(fn=classify_image, inputs = gr.inputs.Image(shape = (224, 244)), outputs = gr.outputs.Label(num_top_classes=3), theme="default", css=".footer{display:none !important}").launch()