Wootang01 commited on
Commit
bb16154
·
1 Parent(s): c0d0a19

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -1
app.py CHANGED
@@ -9,6 +9,12 @@ model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eva
9
  response = requests.get("https://git.io/JJkYN")
10
  labels = response.text.split("\n")
11
 
 
 
 
 
 
 
12
  def predict(inp):
13
  inp = transforms.ToTensor()(inp).unsqueeze(0)
14
  with torch.no_grad():
@@ -16,4 +22,9 @@ def predict(inp):
16
  confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
17
  return confidences
18
 
19
- gr.Interface(fn=predict, inputs = gr.inputs.Image(type="pil"), outputs = gr.outputs.Label(num_top_classes=5)).launch()
 
 
 
 
 
 
9
  response = requests.get("https://git.io/JJkYN")
10
  labels = response.text.split("\n")
11
 
12
+ title = "Image Classifier Two -- PyTorch Resnet-18"
13
+ description = """This machine has vision. It can see objects and concepts in an image. To test the machine, upload or drop an image, submit and read the results. The results comprise a list of words that the machine sees in the image. Beside a word, the length of the bar indicates the confidence with which the machine sees the word. The longer the bar, the more confident the machine is.
14
+ """
15
+ article = "This app was made by following [this Gradio guide](https://gradio.app/image_classification_in_pytorch/)."
16
+
17
+
18
  def predict(inp):
19
  inp = transforms.ToTensor()(inp).unsqueeze(0)
20
  with torch.no_grad():
 
22
  confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
23
  return confidences
24
 
25
+ gr.Interface(fn=predict,
26
+ inputs = gr.inputs.Image(type="pil"),
27
+ outputs = gr.outputs.Label(num_top_classes=5),
28
+ title = title,
29
+ description = description,
30
+ article = article).launch()