File size: 1,110 Bytes
cdfbbe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import gradio as gr
import torch
from torch import nn
from pathlib import Path

model = nn.Sequential(
    nn.Conv2d(1, 32, 3, padding='same'),
    nn.ReLU(),
    nn.MaxPool2d(2),
    nn.Conv2d(32, 64, 3, padding='same'),
    nn.ReLU(),
    nn.MaxPool2d(2),
    nn.Conv2d(64, 128, 3, padding='same'),
    nn.ReLU(),
    nn.MaxPool2d(2),
    nn.Flatten(),
    nn.Linear(1152, 256),
    nn.ReLU(),
    nn.Linear(256, len(LABELS)),
)
state_dict = torch.load('pytorch_model.bin',    map_location='cpu')
model.load_state_dict(state_dict, strict=False)
model.eval()

LABELS = Path('class_names.txt').read_text().splitlines()

def predict(img):
    x = torch.tensor(img, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255.
    with torch.no_grad():
        out = model(x)
    probabilities = torch.nn.functional.softmax(out[0], dim=0)
    values, indices = torch.topk(probabilities, 3)
    confidences = {LABELS[i]: v.item() for i, v in zip(indices, values)}
    return confidences

gr.Interface(fn=predict, 
             inputs="sketchpad",
             outputs="label",
             live=True).launch(debug=True)