Wootang01 commited on
Commit
5b7ff90
·
1 Parent(s): 2cbbb08

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +97 -0
app.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ #import torch
3
+ #from torch import autocast // only for GPU
4
+
5
+ from PIL import Image
6
+ import numpy as np
7
+ from io import BytesIO
8
+ import os
9
+ MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD')
10
+
11
+ from diffusers import StableDiffusionImg2ImgPipeline
12
+
13
+ print("hello sylvain")
14
+
15
+ YOUR_TOKEN=MY_SECRET_TOKEN
16
+
17
+ device="cpu"
18
+
19
+ #prompt_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=YOUR_TOKEN)
20
+ #prompt_pipe.to(device)
21
+
22
+ img_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=YOUR_TOKEN)
23
+ img_pipe.to(device)
24
+
25
+ source_img = gr.Image(source="upload", type="filepath", label="init_img | 512*512 px")
26
+ gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
27
+
28
+ def resize(value,img):
29
+ #baseheight = value
30
+ img = Image.open(img)
31
+ #hpercent = (baseheight/float(img.size[1]))
32
+ #wsize = int((float(img.size[0])*float(hpercent)))
33
+ #img = img.resize((wsize,baseheight), Image.Resampling.LANCZOS)
34
+ img = img.resize((value,value), Image.Resampling.LANCZOS)
35
+ return img
36
+
37
+
38
+ def infer(prompt, source_img):
39
+
40
+ source_image = resize(512, source_img)
41
+ source_image.save('source.png')
42
+ images_list = img_pipe([prompt] * 2, init_image=source_image, strength=0.75)
43
+ images = []
44
+ safe_image = Image.open(r"unsafe.png")
45
+ for i, image in enumerate(images_list["sample"]):
46
+ if(images_list["nsfw_content_detected"][i]):
47
+ images.append(safe_image)
48
+ else:
49
+ images.append(image)
50
+ return images
51
+
52
+ print("Great sylvain ! Everything is working fine !")
53
+
54
+ title="Img2Img Stable Diffusion CPU"
55
+ description="Img2Img Stable Diffusion example using CPU and HF token. <br />Warning: Slow process... ~5/10 min inference time. <b>NSFW filter enabled.</b>"
56
+
57
+ gr.Interface(fn=infer, inputs=["text", source_img], outputs=gallery,title=title,description=description).queue(max_size=100).launch(enable_queue=True)
58
+ #from torch import autocast
59
+ #import requests
60
+ #import torch
61
+ #from PIL import Image
62
+ #from io import BytesIO
63
+ #import os
64
+ #MY_SECRET_TOKEN = os.environ.get('HF_TOKEN_SD')
65
+
66
+ #from diffusers import StableDiffusionImg2ImgPipeline
67
+
68
+ #YOUR_TOKEN = MY_SECRET_TOKEN
69
+ # load the pipeline
70
+ #device = "cuda"
71
+ #model_id_or_path = "CompVis/stable-diffusion-v1-4"
72
+
73
+ # pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token = YOUR_TOKEN)
74
+
75
+ #pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
76
+ # model_id_or_path,
77
+ # revision="fp16",
78
+ # torch_dtype=torch.float16,
79
+ # use_auth_token=YOUR_TOKEN
80
+ #)
81
+ # or download via git clone https://huggingface.co/CompVis/stable-diffusion-v1-4
82
+ # and pass `model_id_or_path="./stable-diffusion-v1-4"` without having to use `use_auth_token=True`.
83
+ #pipe = pipe.to(device)
84
+
85
+ # let's download an initial image
86
+ #url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
87
+
88
+ #response = requests.get(url)
89
+ #init_image = Image.open(BytesIO(response.content)).convert("RGB")
90
+ #init_image = init_image.resize((768, 512))
91
+
92
+ #prompt = "Lively, illustration of a [[[<king::4>]]], portrait, fantasy, intricate, Scenic, hyperdetailed, hyper realistic <king-hearthstone>, unreal engine, 4k, smooth, sharp focus, intricate, cinematic lighting, highly detailed, octane, digital painting, artstation, concept art, vibrant colors, Cinema4D, WLOP, 3d render, in the style of hearthstone::5 art by Artgerm and greg rutkowski and magali villeneuve, martina jackova, Giger"
93
+
94
+ #with autocast("cuda"):
95
+ # images = pipe(prompt=prompt, init_image=init_image, strength=0.75, guidance_scale=7.5).images
96
+
97
+ #images[0].save("fantasy_landscape.png")