import streamlit as st from transformers import pipeline import spacy from spacy import displacy import plotly.express as px import numpy as np st.set_page_config(page_title="Vocabulary Categorizer Two") st.title("Vocabulary Categorizer Two") st.write("This application can identify, highlight and categorize: numbers (CARDINAL); dates (DATE); events (EVENT); geopolitical entities (GPE); locations (LOC); money (MONEY); national, religious or political groups (NORP); organizations (ORG); people (PERSON); products (PRODUCT); and time (TIME) in text.") @st.cache(allow_output_mutation=True, show_spinner=False) def Loading_NLP(): nlp = spacy.load('en_core_web_trf') return nlp @st.cache(allow_output_mutation=True) def entRecognizer(entDict, typeEnt): entList = [ent for ent in entDict if entDict[ent] == typeEnt] return entList def plot_result(top_topics, scores): top_topics = np.array(top_topics) scores = np.array(scores) scores *= 100 fig = px.bar(x=scores, y=top_topics, orientation='h', labels={'x': 'Probability', 'y': 'Category'}, text=scores, range_x=(0,115), title='Top Predictions', color=np.linspace(0,1,len(scores)), color_continuous_scale="Blurred") fig.update(layout_coloraxi_showscale=False) fig.update_traces(texttemplate='%{text:0.1f}%', textposition='outside') st.plotly_chart(fig) with st.spinner(text="Please wait for the models to load. This should take approximately 60 seconds."): nlp = Loading_NLP() default_sentence = "A Russia-led military alliance began deploying paratroopers in Kazakhstan on Thursday to restore order after a night of protests in the Central Asian country turned violent, with the police reporting that dozens of antigovernment demonstrators had been killed and hundreds injured." text = st.text_area('Enter Text Below:', default_sentence, height=300) submit = st.button('Generate') if submit: entities = [] entityLabels = [] doc = nlp(text) for ent in doc.ents: entities.append(ent.text) entityLabels.append(ent.label_) entDict = dict(zip(entities, entityLabels)) entCardinal = entRecognizer(entDict, "CARDINAL") entDate = entRecognizer(entDict, "DATE") entEvent = entRecognizer(entDict, "EVENT") entGPE = entRecognizer(entDict, "GPE") entLoc = entRecognizer(entDict, "LOC") entMoney = entRecognizer(entDict, "MONEY") entNorp = entRecognizer(entDict, "NORP") entOrg = entRecognizer(entDict, "ORG") entPerson = entRecognizer(entDict, "PERSON") entProduct = entRecognizer(entDict, "PRODUCT") entTime = entRecognizer(entDict, "TIME") options = {"ents": ["CARDINAL", "Event", "MONEY", "NORP", "ORG", "GPE", "PERSON", "PRODUCT", "LOC", "DATE", "TIME"]} HTML_WRAPPER = """
{}
""" st.subheader("Categorized Vocabulary List:") st.write("Cardinal Numbers (CARDINAL): " + str(entCardinal)) st.write("Event (EVENT): " + str(entEvent)) st.write("Geopolitical Entities (GPE): " + str(entGPE)) st.write("Money (MONEY): " + str(entMoney)) st.write("National or Religious or Political Groups (NORP): " + str(entNorp)) st.write("People (PERSON): " + str(entPerson)) st.write("Product (PRODUCT): " + str(entProduct)) st.write("Organizations (ORG): " + str(entOrg)) st.write("Dates (DATE): " + str(entDate)) st.write("Locations (LOC): " + str(entLoc)) st.write("Time (TIME): " + str(entTime)) st.subheader("Original Text with Vocabulary Highlighted") html = displacy.render(doc, style="ent", options=options) html = html.replace("\n", " ") st.write(HTML_WRAPPER.format(html), unsafe_allow_html=True)