File size: 10,278 Bytes
77783a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import torch

from huggingface_guess import model_list
from backend.diffusion_engine.base import ForgeDiffusionEngine, ForgeObjects
from backend.patcher.clip import CLIP
from backend.patcher.vae import VAE
from backend.patcher.unet import UnetPatcher
from backend.text_processing.classic_engine import ClassicTextProcessingEngine
from backend.args import dynamic_args
from backend import memory_management
from backend.nn.unet import Timestep

import safetensors.torch as sf
from backend import utils

from modules.shared import opts


class StableDiffusionXL(ForgeDiffusionEngine):
    matched_guesses = [model_list.SDXL]

    def __init__(self, estimated_config, huggingface_components):
        super().__init__(estimated_config, huggingface_components)

        clip = CLIP(
            model_dict={
                'clip_l': huggingface_components['text_encoder'],
                'clip_g': huggingface_components['text_encoder_2']
            },
            tokenizer_dict={
                'clip_l': huggingface_components['tokenizer'],
                'clip_g': huggingface_components['tokenizer_2']
            }
        )

        vae = VAE(model=huggingface_components['vae'])

        unet = UnetPatcher.from_model(
            model=huggingface_components['unet'],
            diffusers_scheduler=huggingface_components['scheduler'],
            config=estimated_config
        )

        self.text_processing_engine_l = ClassicTextProcessingEngine(
            text_encoder=clip.cond_stage_model.clip_l,
            tokenizer=clip.tokenizer.clip_l,
            embedding_dir=dynamic_args['embedding_dir'],
            embedding_key='clip_l',
            embedding_expected_shape=2048,
            emphasis_name=dynamic_args['emphasis_name'],
            text_projection=False,
            minimal_clip_skip=2,
            clip_skip=2,
            return_pooled=False,
            final_layer_norm=False,
        )

        self.text_processing_engine_g = ClassicTextProcessingEngine(
            text_encoder=clip.cond_stage_model.clip_g,
            tokenizer=clip.tokenizer.clip_g,
            embedding_dir=dynamic_args['embedding_dir'],
            embedding_key='clip_g',
            embedding_expected_shape=2048,
            emphasis_name=dynamic_args['emphasis_name'],
            text_projection=True,
            minimal_clip_skip=2,
            clip_skip=2,
            return_pooled=True,
            final_layer_norm=False,
        )

        self.embedder = Timestep(256)

        self.forge_objects = ForgeObjects(unet=unet, clip=clip, vae=vae, clipvision=None)
        self.forge_objects_original = self.forge_objects.shallow_copy()
        self.forge_objects_after_applying_lora = self.forge_objects.shallow_copy()

        # WebUI Legacy
        self.is_sdxl = True

    def set_clip_skip(self, clip_skip):
        self.text_processing_engine_l.clip_skip = clip_skip
        self.text_processing_engine_g.clip_skip = clip_skip

    @torch.inference_mode()
    def get_learned_conditioning(self, prompt: list[str]):
        memory_management.load_model_gpu(self.forge_objects.clip.patcher)

        cond_l = self.text_processing_engine_l(prompt)
        cond_g, clip_pooled = self.text_processing_engine_g(prompt)

        width = getattr(prompt, 'width', 1024) or 1024
        height = getattr(prompt, 'height', 1024) or 1024
        is_negative_prompt = getattr(prompt, 'is_negative_prompt', False)

        crop_w = opts.sdxl_crop_left
        crop_h = opts.sdxl_crop_top
        target_width = width
        target_height = height

        out = [
            self.embedder(torch.Tensor([height])), self.embedder(torch.Tensor([width])),
            self.embedder(torch.Tensor([crop_h])), self.embedder(torch.Tensor([crop_w])),
            self.embedder(torch.Tensor([target_height])), self.embedder(torch.Tensor([target_width]))
        ]

        flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1).to(clip_pooled)

        force_zero_negative_prompt = is_negative_prompt and all(x == '' for x in prompt)

        if force_zero_negative_prompt:
            clip_pooled = torch.zeros_like(clip_pooled)
            cond_l = torch.zeros_like(cond_l)
            cond_g = torch.zeros_like(cond_g)

        cond = dict(
            crossattn=torch.cat([cond_l, cond_g], dim=2),
            vector=torch.cat([clip_pooled, flat], dim=1),
        )

        return cond

    @torch.inference_mode()
    def get_prompt_lengths_on_ui(self, prompt):
        _, token_count = self.text_processing_engine_l.process_texts([prompt])
        return token_count, self.text_processing_engine_l.get_target_prompt_token_count(token_count)

    @torch.inference_mode()
    def encode_first_stage(self, x):
        sample = self.forge_objects.vae.encode(x.movedim(1, -1) * 0.5 + 0.5)
        sample = self.forge_objects.vae.first_stage_model.process_in(sample)
        return sample.to(x)

    @torch.inference_mode()
    def decode_first_stage(self, x):
        sample = self.forge_objects.vae.first_stage_model.process_out(x)
        sample = self.forge_objects.vae.decode(sample).movedim(-1, 1) * 2.0 - 1.0
        return sample.to(x)

    def save_checkpoint(self, filename):
        sd = {}
        sd.update(
            utils.get_state_dict_after_quant(self.forge_objects.unet.model.diffusion_model, prefix='model.diffusion_model.')
        )
        sd.update(
            model_list.SDXL.process_clip_state_dict_for_saving(self,
                utils.get_state_dict_after_quant(self.forge_objects.clip.cond_stage_model, prefix='')
            )
        )
        sd.update(
            utils.get_state_dict_after_quant(self.forge_objects.vae.first_stage_model, prefix='first_stage_model.')
        )
        sf.save_file(sd, filename)
        return filename


class StableDiffusionXLRefiner(ForgeDiffusionEngine):
    matched_guesses = [model_list.SDXLRefiner]

    def __init__(self, estimated_config, huggingface_components):
        super().__init__(estimated_config, huggingface_components)

        clip = CLIP(
            model_dict={
                'clip_g': huggingface_components['text_encoder']
            },
            tokenizer_dict={
                'clip_g': huggingface_components['tokenizer'],
            }
        )

        vae = VAE(model=huggingface_components['vae'])

        unet = UnetPatcher.from_model(
            model=huggingface_components['unet'],
            diffusers_scheduler=huggingface_components['scheduler'],
            config=estimated_config
        )

        self.text_processing_engine_g = ClassicTextProcessingEngine(
            text_encoder=clip.cond_stage_model.clip_g,
            tokenizer=clip.tokenizer.clip_g,
            embedding_dir=dynamic_args['embedding_dir'],
            embedding_key='clip_g',
            embedding_expected_shape=2048,
            emphasis_name=dynamic_args['emphasis_name'],
            text_projection=True,
            minimal_clip_skip=2,
            clip_skip=2,
            return_pooled=True,
            final_layer_norm=False,
        )

        self.embedder = Timestep(256)

        self.forge_objects = ForgeObjects(unet=unet, clip=clip, vae=vae, clipvision=None)
        self.forge_objects_original = self.forge_objects.shallow_copy()
        self.forge_objects_after_applying_lora = self.forge_objects.shallow_copy()

        # WebUI Legacy
        self.is_sdxl = True

    def set_clip_skip(self, clip_skip):
        self.text_processing_engine_g.clip_skip = clip_skip

    @torch.inference_mode()
    def get_learned_conditioning(self, prompt: list[str]):
        memory_management.load_model_gpu(self.forge_objects.clip.patcher)

        cond_g, clip_pooled = self.text_processing_engine_g(prompt)

        width = getattr(prompt, 'width', 1024) or 1024
        height = getattr(prompt, 'height', 1024) or 1024
        is_negative_prompt = getattr(prompt, 'is_negative_prompt', False)

        crop_w = opts.sdxl_crop_left
        crop_h = opts.sdxl_crop_top
        aesthetic = opts.sdxl_refiner_low_aesthetic_score if is_negative_prompt else opts.sdxl_refiner_high_aesthetic_score

        out = [
            self.embedder(torch.Tensor([height])), self.embedder(torch.Tensor([width])),
            self.embedder(torch.Tensor([crop_h])), self.embedder(torch.Tensor([crop_w])),
            self.embedder(torch.Tensor([aesthetic]))
        ]

        flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1).to(clip_pooled)

        force_zero_negative_prompt = is_negative_prompt and all(x == '' for x in prompt)

        if force_zero_negative_prompt:
            clip_pooled = torch.zeros_like(clip_pooled)
            cond_g = torch.zeros_like(cond_g)

        cond = dict(
            crossattn=cond_g,
            vector=torch.cat([clip_pooled, flat], dim=1),
        )

        return cond

    @torch.inference_mode()
    def get_prompt_lengths_on_ui(self, prompt):
        _, token_count = self.text_processing_engine_g.process_texts([prompt])
        return token_count, self.text_processing_engine_g.get_target_prompt_token_count(token_count)

    @torch.inference_mode()
    def encode_first_stage(self, x):
        sample = self.forge_objects.vae.encode(x.movedim(1, -1) * 0.5 + 0.5)
        sample = self.forge_objects.vae.first_stage_model.process_in(sample)
        return sample.to(x)

    @torch.inference_mode()
    def decode_first_stage(self, x):
        sample = self.forge_objects.vae.first_stage_model.process_out(x)
        sample = self.forge_objects.vae.decode(sample).movedim(-1, 1) * 2.0 - 1.0
        return sample.to(x)

    def save_checkpoint(self, filename):
        sd = {}
        sd.update(
            utils.get_state_dict_after_quant(self.forge_objects.unet.model.diffusion_model, prefix='model.diffusion_model.')
        )
        sd.update(
            model_list.SDXLRefiner.process_clip_state_dict_for_saving(self,
                utils.get_state_dict_after_quant(self.forge_objects.clip.cond_stage_model, prefix='')
            )
        )
        sd.update(
            utils.get_state_dict_after_quant(self.forge_objects.vae.first_stage_model, prefix='first_stage_model.')
        )
        sf.save_file(sd, filename)
        return filename