Spaces:
Runtime error
Runtime error
File size: 27,499 Bytes
77783a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 |
import os
import torch
import logging
import importlib
import backend.args
import huggingface_guess
from diffusers import DiffusionPipeline
from transformers import modeling_utils
from backend import memory_management
from backend.utils import read_arbitrary_config, load_torch_file, beautiful_print_gguf_state_dict_statics
from backend.state_dict import try_filter_state_dict, load_state_dict
from backend.operations import using_forge_operations
from backend.nn.vae import IntegratedAutoencoderKL
from backend.nn.clip import IntegratedCLIP
from backend.nn.unet import IntegratedUNet2DConditionModel
from backend.diffusion_engine.sd15 import StableDiffusion
from backend.diffusion_engine.sd20 import StableDiffusion2
from backend.diffusion_engine.sdxl import StableDiffusionXL, StableDiffusionXLRefiner
from backend.diffusion_engine.sd35 import StableDiffusion3
from backend.diffusion_engine.flux import Flux
from backend.diffusion_engine.chroma import Chroma
possible_models = [StableDiffusion, StableDiffusion2, StableDiffusionXLRefiner, StableDiffusionXL, StableDiffusion3, Chroma, Flux]
logging.getLogger("diffusers").setLevel(logging.ERROR)
dir_path = os.path.dirname(__file__)
def load_huggingface_component(guess, component_name, lib_name, cls_name, repo_path, state_dict):
config_path = os.path.join(repo_path, component_name)
if component_name in ['feature_extractor', 'safety_checker']:
return None
if lib_name in ['transformers', 'diffusers']:
if component_name in ['scheduler']:
cls = getattr(importlib.import_module(lib_name), cls_name)
return cls.from_pretrained(os.path.join(repo_path, component_name))
if component_name.startswith('tokenizer'):
cls = getattr(importlib.import_module(lib_name), cls_name)
comp = cls.from_pretrained(os.path.join(repo_path, component_name))
comp._eventual_warn_about_too_long_sequence = lambda *args, **kwargs: None
return comp
if cls_name in ['AutoencoderKL']:
assert isinstance(state_dict, dict) and len(state_dict) > 16, 'You do not have VAE state dict!'
config = IntegratedAutoencoderKL.load_config(config_path)
with using_forge_operations(device=memory_management.cpu, dtype=memory_management.vae_dtype()):
model = IntegratedAutoencoderKL.from_config(config)
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in state_dict.keys(): #diffusers format
state_dict = huggingface_guess.diffusers_convert.convert_vae_state_dict(state_dict)
load_state_dict(model, state_dict, ignore_start='loss.')
return model
if component_name.startswith('text_encoder') and cls_name in ['CLIPTextModel', 'CLIPTextModelWithProjection']:
assert isinstance(state_dict, dict) and len(state_dict) > 16, 'You do not have CLIP state dict!'
from transformers import CLIPTextConfig, CLIPTextModel
config = CLIPTextConfig.from_pretrained(config_path)
to_args = dict(device=memory_management.cpu, dtype=memory_management.text_encoder_dtype())
with modeling_utils.no_init_weights():
with using_forge_operations(**to_args, manual_cast_enabled=True):
model = IntegratedCLIP(CLIPTextModel, config, add_text_projection=True).to(**to_args)
load_state_dict(model, state_dict, ignore_errors=[
'transformer.text_projection.weight',
'transformer.text_model.embeddings.position_ids',
'logit_scale'
], log_name=cls_name)
return model
if cls_name == 'T5EncoderModel':
assert isinstance(state_dict, dict) and len(state_dict) > 16, 'You do not have T5 state dict!'
from backend.nn.t5 import IntegratedT5
config = read_arbitrary_config(config_path)
storage_dtype = memory_management.text_encoder_dtype()
state_dict_dtype = memory_management.state_dict_dtype(state_dict)
if state_dict_dtype in [torch.float8_e4m3fn, torch.float8_e5m2, 'nf4', 'fp4', 'gguf']:
print(f'Using Detected T5 Data Type: {state_dict_dtype}')
storage_dtype = state_dict_dtype
if state_dict_dtype in ['nf4', 'fp4', 'gguf']:
print(f'Using pre-quant state dict!')
if state_dict_dtype in ['gguf']:
beautiful_print_gguf_state_dict_statics(state_dict)
else:
print(f'Using Default T5 Data Type: {storage_dtype}')
if storage_dtype in ['nf4', 'fp4', 'gguf']:
with modeling_utils.no_init_weights():
with using_forge_operations(device=memory_management.cpu, dtype=memory_management.text_encoder_dtype(), manual_cast_enabled=False, bnb_dtype=storage_dtype):
model = IntegratedT5(config)
else:
with modeling_utils.no_init_weights():
with using_forge_operations(device=memory_management.cpu, dtype=storage_dtype, manual_cast_enabled=True):
model = IntegratedT5(config)
load_state_dict(model, state_dict, log_name=cls_name, ignore_errors=['transformer.encoder.embed_tokens.weight', 'logit_scale'])
return model
if cls_name in ['UNet2DConditionModel', 'FluxTransformer2DModel', 'SD3Transformer2DModel', 'ChromaTransformer2DModel']:
assert isinstance(state_dict, dict) and len(state_dict) > 16, 'You do not have model state dict!'
model_loader = None
if cls_name == 'UNet2DConditionModel':
model_loader = lambda c: IntegratedUNet2DConditionModel.from_config(c)
elif cls_name == 'FluxTransformer2DModel':
from backend.nn.flux import IntegratedFluxTransformer2DModel
model_loader = lambda c: IntegratedFluxTransformer2DModel(**c)
elif cls_name == 'ChromaTransformer2DModel':
from backend.nn.chroma import IntegratedChromaTransformer2DModel
model_loader = lambda c: IntegratedChromaTransformer2DModel(**c)
elif cls_name == 'SD3Transformer2DModel':
from backend.nn.mmditx import MMDiTX
model_loader = lambda c: MMDiTX(**c)
unet_config = guess.unet_config.copy()
state_dict_parameters = memory_management.state_dict_parameters(state_dict)
state_dict_dtype = memory_management.state_dict_dtype(state_dict)
storage_dtype = memory_management.unet_dtype(model_params=state_dict_parameters, supported_dtypes=guess.supported_inference_dtypes)
unet_storage_dtype_overwrite = backend.args.dynamic_args.get('forge_unet_storage_dtype')
if unet_storage_dtype_overwrite is not None:
storage_dtype = unet_storage_dtype_overwrite
elif state_dict_dtype in [torch.float8_e4m3fn, torch.float8_e5m2, 'nf4', 'fp4', 'gguf']:
print(f'Using Detected UNet Type: {state_dict_dtype}')
storage_dtype = state_dict_dtype
if state_dict_dtype in ['nf4', 'fp4', 'gguf']:
print(f'Using pre-quant state dict!')
if state_dict_dtype in ['gguf']:
beautiful_print_gguf_state_dict_statics(state_dict)
load_device = memory_management.get_torch_device()
computation_dtype = memory_management.get_computation_dtype(load_device, parameters=state_dict_parameters, supported_dtypes=guess.supported_inference_dtypes)
offload_device = memory_management.unet_offload_device()
if storage_dtype in ['nf4', 'fp4', 'gguf']:
initial_device = memory_management.unet_inital_load_device(parameters=state_dict_parameters, dtype=computation_dtype)
with using_forge_operations(device=initial_device, dtype=computation_dtype, manual_cast_enabled=False, bnb_dtype=storage_dtype):
model = model_loader(unet_config)
else:
initial_device = memory_management.unet_inital_load_device(parameters=state_dict_parameters, dtype=storage_dtype)
need_manual_cast = storage_dtype != computation_dtype
to_args = dict(device=initial_device, dtype=storage_dtype)
with using_forge_operations(**to_args, manual_cast_enabled=need_manual_cast):
model = model_loader(unet_config).to(**to_args)
load_state_dict(model, state_dict)
if hasattr(model, '_internal_dict'):
model._internal_dict = unet_config
else:
model.config = unet_config
model.storage_dtype = storage_dtype
model.computation_dtype = computation_dtype
model.load_device = load_device
model.initial_device = initial_device
model.offload_device = offload_device
return model
print(f'Skipped: {component_name} = {lib_name}.{cls_name}')
return None
def replace_state_dict(sd, asd, guess):
vae_key_prefix = guess.vae_key_prefix[0]
text_encoder_key_prefix = guess.text_encoder_key_prefix[0]
if 'enc.blk.0.attn_k.weight' in asd:
wierd_t5_format_from_city96 = {
"enc.": "encoder.",
".blk.": ".block.",
"token_embd": "shared",
"output_norm": "final_layer_norm",
"attn_q": "layer.0.SelfAttention.q",
"attn_k": "layer.0.SelfAttention.k",
"attn_v": "layer.0.SelfAttention.v",
"attn_o": "layer.0.SelfAttention.o",
"attn_norm": "layer.0.layer_norm",
"attn_rel_b": "layer.0.SelfAttention.relative_attention_bias",
"ffn_up": "layer.1.DenseReluDense.wi_1",
"ffn_down": "layer.1.DenseReluDense.wo",
"ffn_gate": "layer.1.DenseReluDense.wi_0",
"ffn_norm": "layer.1.layer_norm",
}
wierd_t5_pre_quant_keys_from_city96 = ['shared.weight']
asd_new = {}
for k, v in asd.items():
for s, d in wierd_t5_format_from_city96.items():
k = k.replace(s, d)
asd_new[k] = v
for k in wierd_t5_pre_quant_keys_from_city96:
asd_new[k] = asd_new[k].dequantize_as_pytorch_parameter()
asd.clear()
asd = asd_new
if "decoder.conv_in.weight" in asd:
keys_to_delete = [k for k in sd if k.startswith(vae_key_prefix)]
for k in keys_to_delete:
del sd[k]
for k, v in asd.items():
sd[vae_key_prefix + k] = v
## identify model type
flux_test_key = "model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale"
sd3_test_key = "model.diffusion_model.final_layer.adaLN_modulation.1.bias"
legacy_test_key = "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight"
model_type = "-"
if legacy_test_key in sd:
match sd[legacy_test_key].shape[1]:
case 768:
model_type = "sd1"
case 1024:
model_type = "sd2"
case 1280:
model_type = "xlrf" # sdxl refiner model
case 2048:
model_type = "sdxl"
elif flux_test_key in sd:
model_type = "flux"
elif sd3_test_key in sd:
model_type = "sd3"
## prefixes used by various model types for CLIP-L
prefix_L = {
"-" : None,
"sd1" : "cond_stage_model.transformer.",
"sd2" : None,
"xlrf": None,
"sdxl": "conditioner.embedders.0.transformer.",
"flux": "text_encoders.clip_l.transformer.",
"sd3" : "text_encoders.clip_l.transformer.",
}
## prefixes used by various model types for CLIP-G
prefix_G = {
"-" : None,
"sd1" : None,
"sd2" : None,
"xlrf": "conditioner.embedders.0.model.transformer.",
"sdxl": "conditioner.embedders.1.model.transformer.",
"flux": None,
"sd3" : "text_encoders.clip_g.transformer.",
}
## prefixes used by various model types for CLIP-H
prefix_H = {
"-" : None,
"sd1" : None,
"sd2" : "conditioner.embedders.0.model.",
"xlrf": None,
"sdxl": None,
"flux": None,
"sd3" : None,
}
## VAE format 0 (extracted from model, could be sd1, sd2, sdxl, sd3).
if "first_stage_model.decoder.conv_in.weight" in asd:
channels = asd["first_stage_model.decoder.conv_in.weight"].shape[1]
if model_type == "sd1" or model_type == "sd2" or model_type == "xlrf" or model_type == "sdxl":
if channels == 4:
for k, v in asd.items():
sd[k] = v
elif model_type == "sd3":
if channels == 16:
for k, v in asd.items():
sd[k] = v
## CLIP-H
CLIP_H = { # key to identify source model old_prefix
'cond_stage_model.model.ln_final.weight' : 'cond_stage_model.model.',
# 'text_model.encoder.layers.0.layer_norm1.bias' : 'text_model'. # would need converting
}
for CLIP_key in CLIP_H.keys():
if CLIP_key in asd and asd[CLIP_key].shape[0] == 1024:
new_prefix = prefix_H[model_type]
old_prefix = CLIP_H[CLIP_key]
if new_prefix is not None:
for k, v in asd.items():
new_k = k.replace(old_prefix, new_prefix)
sd[new_k] = v
## CLIP-G
CLIP_G = { # key to identify source model old_prefix
'conditioner.embedders.1.model.transformer.resblocks.0.ln_1.bias' : 'conditioner.embedders.1.model.transformer.',
'text_encoders.clip_g.transformer.text_model.encoder.layers.0.layer_norm1.bias' : 'text_encoders.clip_g.transformer.',
'text_model.encoder.layers.0.layer_norm1.bias' : '',
'transformer.resblocks.0.ln_1.bias' : 'transformer.'
}
for CLIP_key in CLIP_G.keys():
if CLIP_key in asd and asd[CLIP_key].shape[0] == 1280:
new_prefix = prefix_G[model_type]
old_prefix = CLIP_G[CLIP_key]
if new_prefix is not None:
if "resblocks" not in CLIP_key and model_type != "sd3": # need to convert
def convert_transformers(statedict, prefix_from, prefix_to, number):
keys_to_replace = {
"{}text_model.embeddings.position_embedding.weight" : "{}positional_embedding",
"{}text_model.embeddings.token_embedding.weight" : "{}token_embedding.weight",
"{}text_model.final_layer_norm.weight" : "{}ln_final.weight",
"{}text_model.final_layer_norm.bias" : "{}ln_final.bias",
"text_projection.weight" : "{}text_projection",
}
resblock_to_replace = {
"layer_norm1" : "ln_1",
"layer_norm2" : "ln_2",
"mlp.fc1" : "mlp.c_fc",
"mlp.fc2" : "mlp.c_proj",
"self_attn.out_proj" : "attn.out_proj" ,
}
for x in keys_to_replace: # remove trailing 'transformer.' from new prefix
k = x.format(prefix_from)
statedict[keys_to_replace[x].format(prefix_to[:-12])] = statedict.pop(k)
for resblock in range(number):
for y in ["weight", "bias"]:
for x in resblock_to_replace:
k = "{}text_model.encoder.layers.{}.{}.{}".format(prefix_from, resblock, x, y)
k_to = "{}resblocks.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y)
statedict[k_to] = statedict.pop(k)
k_from = "{}text_model.encoder.layers.{}.{}.{}".format(prefix_from, resblock, "self_attn.q_proj", y)
weightsQ = statedict.pop(k_from)
k_from = "{}text_model.encoder.layers.{}.{}.{}".format(prefix_from, resblock, "self_attn.k_proj", y)
weightsK = statedict.pop(k_from)
k_from = "{}text_model.encoder.layers.{}.{}.{}".format(prefix_from, resblock, "self_attn.v_proj", y)
weightsV = statedict.pop(k_from)
k_to = "{}resblocks.{}.attn.in_proj_{}".format(prefix_to, resblock, y)
statedict[k_to] = torch.cat((weightsQ, weightsK, weightsV))
return statedict
asd = convert_transformers(asd, old_prefix, new_prefix, 32)
for k, v in asd.items():
sd[k] = v
elif old_prefix == "":
for k, v in asd.items():
new_k = new_prefix + k
sd[new_k] = v
else:
for k, v in asd.items():
new_k = k.replace(old_prefix, new_prefix)
sd[new_k] = v
## CLIP-L
CLIP_L = { # key to identify source model old_prefix
'cond_stage_model.transformer.text_model.encoder.layers.0.layer_norm1.bias' : 'cond_stage_model.transformer.',
'conditioner.embedders.0.transformer.text_model.encoder.layers.0.layer_norm1.bias' : 'conditioner.embedders.0.transformer.',
'text_encoders.clip_l.transformer.text_model.encoder.layers.0.layer_norm1.bias' : 'text_encoders.clip_l.transformer.',
'text_model.encoder.layers.0.layer_norm1.bias' : '',
'transformer.resblocks.0.ln_1.bias' : 'transformer.'
}
for CLIP_key in CLIP_L.keys():
if CLIP_key in asd and asd[CLIP_key].shape[0] == 768:
new_prefix = prefix_L[model_type]
old_prefix = CLIP_L[CLIP_key]
if new_prefix is not None:
if "resblocks" in CLIP_key: # need to convert
def transformers_convert(statedict, prefix_from, prefix_to, number):
keys_to_replace = {
"positional_embedding" : "{}text_model.embeddings.position_embedding.weight",
"token_embedding.weight": "{}text_model.embeddings.token_embedding.weight",
"ln_final.weight" : "{}text_model.final_layer_norm.weight",
"ln_final.bias" : "{}text_model.final_layer_norm.bias",
"text_projection" : "text_projection.weight",
}
resblock_to_replace = {
"ln_1" : "layer_norm1",
"ln_2" : "layer_norm2",
"mlp.c_fc" : "mlp.fc1",
"mlp.c_proj" : "mlp.fc2",
"attn.out_proj" : "self_attn.out_proj",
}
for k in keys_to_replace:
statedict[keys_to_replace[k].format(prefix_to)] = statedict.pop(k)
for resblock in range(number):
for y in ["weight", "bias"]:
for x in resblock_to_replace:
k = "{}resblocks.{}.{}.{}".format(prefix_from, resblock, x, y)
k_to = "{}text_model.encoder.layers.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y)
statedict[k_to] = statedict.pop(k)
k_from = "{}resblocks.{}.attn.in_proj_{}".format(prefix_from, resblock, y)
weights = statedict.pop(k_from)
shape_from = weights.shape[0] // 3
for x in range(3):
p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"]
k_to = "{}text_model.encoder.layers.{}.{}.{}".format(prefix_to, resblock, p[x], y)
statedict[k_to] = weights[shape_from*x:shape_from*(x + 1)]
return statedict
asd = transformers_convert(asd, old_prefix, new_prefix, 12)
for k, v in asd.items():
sd[k] = v
elif old_prefix == "":
for k, v in asd.items():
new_k = new_prefix + k
sd[new_k] = v
else:
for k, v in asd.items():
new_k = k.replace(old_prefix, new_prefix)
sd[new_k] = v
if 'encoder.block.0.layer.0.SelfAttention.k.weight' in asd:
keys_to_delete = [k for k in sd if k.startswith(f"{text_encoder_key_prefix}t5xxl.")]
for k in keys_to_delete:
del sd[k]
for k, v in asd.items():
sd[f"{text_encoder_key_prefix}t5xxl.transformer.{k}"] = v
return sd
def preprocess_state_dict(sd):
if not any(k.startswith("model.diffusion_model") for k in sd.keys()):
sd = {f"model.diffusion_model.{k}": v for k, v in sd.items()}
return sd
def split_state_dict(sd, additional_state_dicts: list = None):
sd = load_torch_file(sd)
sd = preprocess_state_dict(sd)
guess = huggingface_guess.guess(sd)
if isinstance(additional_state_dicts, list):
for asd in additional_state_dicts:
asd = load_torch_file(asd)
sd = replace_state_dict(sd, asd, guess)
del asd
guess.clip_target = guess.clip_target(sd)
guess.model_type = guess.model_type(sd)
guess.ztsnr = 'ztsnr' in sd
sd = guess.process_vae_state_dict(sd)
state_dict = {
guess.unet_target: try_filter_state_dict(sd, guess.unet_key_prefix),
guess.vae_target: try_filter_state_dict(sd, guess.vae_key_prefix)
}
sd = guess.process_clip_state_dict(sd)
for k, v in guess.clip_target.items():
state_dict[v] = try_filter_state_dict(sd, [k + '.'])
state_dict['ignore'] = sd
print_dict = {k: len(v) for k, v in state_dict.items()}
print(f'StateDict Keys: {print_dict}')
del state_dict['ignore']
return state_dict, guess
# To be removed once PR merged on huggingface_guess
chroma_is_in_huggingface_guess = hasattr(huggingface_guess.model_list, "Chroma")
if not chroma_is_in_huggingface_guess:
class GuessChroma:
huggingface_repo = 'Chroma'
unet_extra_config = {
'guidance_out_dim': 3072,
'guidance_hidden_dim': 5120,
'guidance_n_layers': 5
}
unet_remove_config = ['guidance_embed']
@torch.inference_mode()
def forge_loader(sd, additional_state_dicts=None):
try:
state_dicts, estimated_config = split_state_dict(sd, additional_state_dicts=additional_state_dicts)
except:
raise ValueError('Failed to recognize model type!')
if not chroma_is_in_huggingface_guess \
and estimated_config.huggingface_repo == "black-forest-labs/FLUX.1-schnell" \
and "transformer" in state_dicts \
and "distilled_guidance_layer.layers.0.in_layer.bias" in state_dicts["transformer"]:
estimated_config.huggingface_repo = GuessChroma.huggingface_repo
for x in GuessChroma.unet_extra_config:
estimated_config.unet_config[x] = GuessChroma.unet_extra_config[x]
for x in GuessChroma.unet_remove_config:
del estimated_config.unet_config[x]
state_dicts['text_encoder'] = state_dicts['text_encoder_2']
del state_dicts['text_encoder_2']
repo_name = estimated_config.huggingface_repo
local_path = os.path.join(dir_path, 'huggingface', repo_name)
config: dict = DiffusionPipeline.load_config(local_path)
huggingface_components = {}
for component_name, v in config.items():
if isinstance(v, list) and len(v) == 2:
lib_name, cls_name = v
component_sd = state_dicts.get(component_name, None)
component = load_huggingface_component(estimated_config, component_name, lib_name, cls_name, local_path, component_sd)
if component_sd is not None:
del state_dicts[component_name]
if component is not None:
huggingface_components[component_name] = component
yaml_config = None
yaml_config_prediction_type = None
try:
import yaml
from pathlib import Path
config_filename = os.path.splitext(sd)[0] + '.yaml'
if Path(config_filename).is_file():
with open(config_filename, 'r') as stream:
yaml_config = yaml.safe_load(stream)
except ImportError:
pass
# Fix Huggingface prediction type using .yaml config or estimated config detection
prediction_types = {
'EPS': 'epsilon',
'V_PREDICTION': 'v_prediction',
'EDM': 'edm',
}
has_prediction_type = 'scheduler' in huggingface_components and hasattr(huggingface_components['scheduler'], 'config') and 'prediction_type' in huggingface_components['scheduler'].config
if yaml_config is not None:
yaml_config_prediction_type: str = (
yaml_config.get('model', {}).get('params', {}).get('parameterization', '')
or yaml_config.get('model', {}).get('params', {}).get('denoiser_config', {}).get('params', {}).get('scaling_config', {}).get('target', '')
)
if yaml_config_prediction_type == 'v' or yaml_config_prediction_type.endswith(".VScaling"):
yaml_config_prediction_type = 'v_prediction'
else:
# Use estimated prediction config if no suitable prediction type found
yaml_config_prediction_type = ''
if has_prediction_type:
if yaml_config_prediction_type:
huggingface_components['scheduler'].config.prediction_type = yaml_config_prediction_type
else:
huggingface_components['scheduler'].config.prediction_type = prediction_types.get(estimated_config.model_type.name, huggingface_components['scheduler'].config.prediction_type)
if not chroma_is_in_huggingface_guess and estimated_config.huggingface_repo == "Chroma":
return Chroma(estimated_config=estimated_config, huggingface_components=huggingface_components)
for M in possible_models:
if any(isinstance(estimated_config, x) for x in M.matched_guesses):
return M(estimated_config=estimated_config, huggingface_components=huggingface_components)
print('Failed to recognize model type!')
return None
|