File size: 27,499 Bytes
77783a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
import os
import torch
import logging
import importlib

import backend.args
import huggingface_guess

from diffusers import DiffusionPipeline
from transformers import modeling_utils

from backend import memory_management
from backend.utils import read_arbitrary_config, load_torch_file, beautiful_print_gguf_state_dict_statics
from backend.state_dict import try_filter_state_dict, load_state_dict
from backend.operations import using_forge_operations
from backend.nn.vae import IntegratedAutoencoderKL
from backend.nn.clip import IntegratedCLIP
from backend.nn.unet import IntegratedUNet2DConditionModel

from backend.diffusion_engine.sd15 import StableDiffusion
from backend.diffusion_engine.sd20 import StableDiffusion2
from backend.diffusion_engine.sdxl import StableDiffusionXL, StableDiffusionXLRefiner
from backend.diffusion_engine.sd35 import StableDiffusion3
from backend.diffusion_engine.flux import Flux
from backend.diffusion_engine.chroma import Chroma


possible_models = [StableDiffusion, StableDiffusion2, StableDiffusionXLRefiner, StableDiffusionXL, StableDiffusion3, Chroma, Flux]


logging.getLogger("diffusers").setLevel(logging.ERROR)
dir_path = os.path.dirname(__file__)


def load_huggingface_component(guess, component_name, lib_name, cls_name, repo_path, state_dict):
    config_path = os.path.join(repo_path, component_name)

    if component_name in ['feature_extractor', 'safety_checker']:
        return None

    if lib_name in ['transformers', 'diffusers']:
        if component_name in ['scheduler']:
            cls = getattr(importlib.import_module(lib_name), cls_name)
            return cls.from_pretrained(os.path.join(repo_path, component_name))
        if component_name.startswith('tokenizer'):
            cls = getattr(importlib.import_module(lib_name), cls_name)
            comp = cls.from_pretrained(os.path.join(repo_path, component_name))
            comp._eventual_warn_about_too_long_sequence = lambda *args, **kwargs: None
            return comp
        if cls_name in ['AutoencoderKL']:
            assert isinstance(state_dict, dict) and len(state_dict) > 16, 'You do not have VAE state dict!'

            config = IntegratedAutoencoderKL.load_config(config_path)

            with using_forge_operations(device=memory_management.cpu, dtype=memory_management.vae_dtype()):
                model = IntegratedAutoencoderKL.from_config(config)

            if 'decoder.up_blocks.0.resnets.0.norm1.weight' in state_dict.keys(): #diffusers format
                state_dict = huggingface_guess.diffusers_convert.convert_vae_state_dict(state_dict)
            load_state_dict(model, state_dict, ignore_start='loss.')
            return model
        if component_name.startswith('text_encoder') and cls_name in ['CLIPTextModel', 'CLIPTextModelWithProjection']:
            assert isinstance(state_dict, dict) and len(state_dict) > 16, 'You do not have CLIP state dict!'

            from transformers import CLIPTextConfig, CLIPTextModel
            config = CLIPTextConfig.from_pretrained(config_path)

            to_args = dict(device=memory_management.cpu, dtype=memory_management.text_encoder_dtype())

            with modeling_utils.no_init_weights():
                with using_forge_operations(**to_args, manual_cast_enabled=True):
                    model = IntegratedCLIP(CLIPTextModel, config, add_text_projection=True).to(**to_args)

            load_state_dict(model, state_dict, ignore_errors=[
                'transformer.text_projection.weight',
                'transformer.text_model.embeddings.position_ids',
                'logit_scale'
            ], log_name=cls_name)

            return model
        if cls_name == 'T5EncoderModel':
            assert isinstance(state_dict, dict) and len(state_dict) > 16, 'You do not have T5 state dict!'

            from backend.nn.t5 import IntegratedT5
            config = read_arbitrary_config(config_path)

            storage_dtype = memory_management.text_encoder_dtype()
            state_dict_dtype = memory_management.state_dict_dtype(state_dict)

            if state_dict_dtype in [torch.float8_e4m3fn, torch.float8_e5m2, 'nf4', 'fp4', 'gguf']:
                print(f'Using Detected T5 Data Type: {state_dict_dtype}')
                storage_dtype = state_dict_dtype
                if state_dict_dtype in ['nf4', 'fp4', 'gguf']:
                    print(f'Using pre-quant state dict!')
                    if state_dict_dtype in ['gguf']:
                        beautiful_print_gguf_state_dict_statics(state_dict)
            else:
                print(f'Using Default T5 Data Type: {storage_dtype}')

            if storage_dtype in ['nf4', 'fp4', 'gguf']:
                with modeling_utils.no_init_weights():
                    with using_forge_operations(device=memory_management.cpu, dtype=memory_management.text_encoder_dtype(), manual_cast_enabled=False, bnb_dtype=storage_dtype):
                        model = IntegratedT5(config)
            else:
                with modeling_utils.no_init_weights():
                    with using_forge_operations(device=memory_management.cpu, dtype=storage_dtype, manual_cast_enabled=True):
                        model = IntegratedT5(config)

            load_state_dict(model, state_dict, log_name=cls_name, ignore_errors=['transformer.encoder.embed_tokens.weight', 'logit_scale'])

            return model
        if cls_name in ['UNet2DConditionModel', 'FluxTransformer2DModel', 'SD3Transformer2DModel', 'ChromaTransformer2DModel']:
            assert isinstance(state_dict, dict) and len(state_dict) > 16, 'You do not have model state dict!'

            model_loader = None
            if cls_name == 'UNet2DConditionModel':
                model_loader = lambda c: IntegratedUNet2DConditionModel.from_config(c)
            elif cls_name == 'FluxTransformer2DModel':
                from backend.nn.flux import IntegratedFluxTransformer2DModel
                model_loader = lambda c: IntegratedFluxTransformer2DModel(**c)
            elif cls_name == 'ChromaTransformer2DModel':
                from backend.nn.chroma import IntegratedChromaTransformer2DModel
                model_loader = lambda c: IntegratedChromaTransformer2DModel(**c)
            elif cls_name == 'SD3Transformer2DModel':
                from backend.nn.mmditx import MMDiTX
                model_loader = lambda c: MMDiTX(**c)

            unet_config = guess.unet_config.copy()
            state_dict_parameters = memory_management.state_dict_parameters(state_dict)
            state_dict_dtype = memory_management.state_dict_dtype(state_dict)

            storage_dtype = memory_management.unet_dtype(model_params=state_dict_parameters, supported_dtypes=guess.supported_inference_dtypes)

            unet_storage_dtype_overwrite = backend.args.dynamic_args.get('forge_unet_storage_dtype')

            if unet_storage_dtype_overwrite is not None:
                storage_dtype = unet_storage_dtype_overwrite
            elif state_dict_dtype in [torch.float8_e4m3fn, torch.float8_e5m2, 'nf4', 'fp4', 'gguf']:
                print(f'Using Detected UNet Type: {state_dict_dtype}')
                storage_dtype = state_dict_dtype
                if state_dict_dtype in ['nf4', 'fp4', 'gguf']:
                    print(f'Using pre-quant state dict!')
                    if state_dict_dtype in ['gguf']:
                        beautiful_print_gguf_state_dict_statics(state_dict)

            load_device = memory_management.get_torch_device()
            computation_dtype = memory_management.get_computation_dtype(load_device, parameters=state_dict_parameters, supported_dtypes=guess.supported_inference_dtypes)
            offload_device = memory_management.unet_offload_device()

            if storage_dtype in ['nf4', 'fp4', 'gguf']:
                initial_device = memory_management.unet_inital_load_device(parameters=state_dict_parameters, dtype=computation_dtype)
                with using_forge_operations(device=initial_device, dtype=computation_dtype, manual_cast_enabled=False, bnb_dtype=storage_dtype):
                    model = model_loader(unet_config)
            else:
                initial_device = memory_management.unet_inital_load_device(parameters=state_dict_parameters, dtype=storage_dtype)
                need_manual_cast = storage_dtype != computation_dtype
                to_args = dict(device=initial_device, dtype=storage_dtype)

                with using_forge_operations(**to_args, manual_cast_enabled=need_manual_cast):
                    model = model_loader(unet_config).to(**to_args)

            load_state_dict(model, state_dict)

            if hasattr(model, '_internal_dict'):
                model._internal_dict = unet_config
            else:
                model.config = unet_config

            model.storage_dtype = storage_dtype
            model.computation_dtype = computation_dtype
            model.load_device = load_device
            model.initial_device = initial_device
            model.offload_device = offload_device

            return model

    print(f'Skipped: {component_name} = {lib_name}.{cls_name}')
    return None


def replace_state_dict(sd, asd, guess):
    vae_key_prefix = guess.vae_key_prefix[0]
    text_encoder_key_prefix = guess.text_encoder_key_prefix[0]

    if 'enc.blk.0.attn_k.weight' in asd:
        wierd_t5_format_from_city96 = {
            "enc.": "encoder.",
            ".blk.": ".block.",
            "token_embd": "shared",
            "output_norm": "final_layer_norm",
            "attn_q": "layer.0.SelfAttention.q",
            "attn_k": "layer.0.SelfAttention.k",
            "attn_v": "layer.0.SelfAttention.v",
            "attn_o": "layer.0.SelfAttention.o",
            "attn_norm": "layer.0.layer_norm",
            "attn_rel_b": "layer.0.SelfAttention.relative_attention_bias",
            "ffn_up": "layer.1.DenseReluDense.wi_1",
            "ffn_down": "layer.1.DenseReluDense.wo",
            "ffn_gate": "layer.1.DenseReluDense.wi_0",
            "ffn_norm": "layer.1.layer_norm",
        }
        wierd_t5_pre_quant_keys_from_city96 = ['shared.weight']
        asd_new = {}
        for k, v in asd.items():
            for s, d in wierd_t5_format_from_city96.items():
                k = k.replace(s, d)
            asd_new[k] = v
        for k in wierd_t5_pre_quant_keys_from_city96:
            asd_new[k] = asd_new[k].dequantize_as_pytorch_parameter()
        asd.clear()
        asd = asd_new

    if "decoder.conv_in.weight" in asd:
        keys_to_delete = [k for k in sd if k.startswith(vae_key_prefix)]
        for k in keys_to_delete:
            del sd[k]
        for k, v in asd.items():
            sd[vae_key_prefix + k] = v


    ##  identify model type
    flux_test_key = "model.diffusion_model.double_blocks.0.img_attn.norm.key_norm.scale"
    sd3_test_key = "model.diffusion_model.final_layer.adaLN_modulation.1.bias"
    legacy_test_key = "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight"

    model_type = "-"
    if legacy_test_key in sd:
        match sd[legacy_test_key].shape[1]:
            case 768:
                model_type = "sd1"
            case 1024:
                model_type = "sd2"
            case 1280:
                model_type = "xlrf"     # sdxl refiner model
            case 2048:
                model_type = "sdxl"
    elif flux_test_key in sd:
        model_type = "flux"
    elif sd3_test_key in sd:
        model_type = "sd3"

    ##  prefixes used by various model types for CLIP-L
    prefix_L = {
        "-"   : None,
        "sd1" : "cond_stage_model.transformer.",
        "sd2" : None,
        "xlrf": None,
        "sdxl": "conditioner.embedders.0.transformer.",
        "flux": "text_encoders.clip_l.transformer.",
        "sd3" : "text_encoders.clip_l.transformer.",
    }
    ##  prefixes used by various model types for CLIP-G
    prefix_G = {
        "-"   : None,
        "sd1" : None,
        "sd2" : None,
        "xlrf": "conditioner.embedders.0.model.transformer.",
        "sdxl": "conditioner.embedders.1.model.transformer.",
        "flux": None,
        "sd3" : "text_encoders.clip_g.transformer.",
    }
    ##  prefixes used by various model types for CLIP-H
    prefix_H = {
        "-"   : None,
        "sd1" : None,
        "sd2" : "conditioner.embedders.0.model.",
        "xlrf": None,
        "sdxl": None,
        "flux": None,
        "sd3" : None,
    }


    ##  VAE format 0 (extracted from model, could be sd1, sd2, sdxl, sd3).
    if "first_stage_model.decoder.conv_in.weight" in asd:
        channels = asd["first_stage_model.decoder.conv_in.weight"].shape[1]
        if model_type == "sd1" or model_type == "sd2" or model_type == "xlrf" or model_type == "sdxl":
            if channels == 4:
                for k, v in asd.items():
                    sd[k] = v
        elif model_type == "sd3":
            if channels == 16:
                for k, v in asd.items():
                    sd[k] = v

    ##  CLIP-H
    CLIP_H = {     #   key to identify source model             old_prefix
        'cond_stage_model.model.ln_final.weight'            : 'cond_stage_model.model.',
#        'text_model.encoder.layers.0.layer_norm1.bias'      : 'text_model'.    # would need converting
        }
    for CLIP_key in CLIP_H.keys():
        if CLIP_key in asd and asd[CLIP_key].shape[0] == 1024:
            new_prefix = prefix_H[model_type]
            old_prefix = CLIP_H[CLIP_key]

            if new_prefix is not None:
                for k, v in asd.items():
                    new_k = k.replace(old_prefix, new_prefix)
                    sd[new_k] = v

    ##  CLIP-G
    CLIP_G = {     #   key to identify source model                                                old_prefix
        'conditioner.embedders.1.model.transformer.resblocks.0.ln_1.bias'               : 'conditioner.embedders.1.model.transformer.',
        'text_encoders.clip_g.transformer.text_model.encoder.layers.0.layer_norm1.bias' : 'text_encoders.clip_g.transformer.',
        'text_model.encoder.layers.0.layer_norm1.bias'                                  : '',
        'transformer.resblocks.0.ln_1.bias'                                             : 'transformer.'
    }
    for CLIP_key in CLIP_G.keys():
        if CLIP_key in asd and asd[CLIP_key].shape[0] == 1280:
            new_prefix = prefix_G[model_type]
            old_prefix = CLIP_G[CLIP_key]

            if new_prefix is not None:
                if "resblocks" not in CLIP_key and model_type != "sd3": # need to convert
                    def convert_transformers(statedict, prefix_from, prefix_to, number):
                        keys_to_replace = {
                            "{}text_model.embeddings.position_embedding.weight" : "{}positional_embedding",
                            "{}text_model.embeddings.token_embedding.weight"    : "{}token_embedding.weight",
                            "{}text_model.final_layer_norm.weight"              : "{}ln_final.weight",
                            "{}text_model.final_layer_norm.bias"                : "{}ln_final.bias",
                            "text_projection.weight"                            : "{}text_projection",
                        }
                        resblock_to_replace = {
                            "layer_norm1"           : "ln_1",
                            "layer_norm2"           : "ln_2",
                            "mlp.fc1"               : "mlp.c_fc",
                            "mlp.fc2"               : "mlp.c_proj",
                            "self_attn.out_proj"    : "attn.out_proj" ,
                        }

                        for x in keys_to_replace:   #   remove trailing 'transformer.' from new prefix
                            k = x.format(prefix_from)
                            statedict[keys_to_replace[x].format(prefix_to[:-12])] = statedict.pop(k)

                        for resblock in range(number):
                            for y in ["weight", "bias"]:
                                for x in resblock_to_replace:
                                    k = "{}text_model.encoder.layers.{}.{}.{}".format(prefix_from, resblock, x, y)
                                    k_to = "{}resblocks.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y)
                                    statedict[k_to] = statedict.pop(k)

                                k_from = "{}text_model.encoder.layers.{}.{}.{}".format(prefix_from, resblock, "self_attn.q_proj", y)
                                weightsQ = statedict.pop(k_from)
                                k_from = "{}text_model.encoder.layers.{}.{}.{}".format(prefix_from, resblock, "self_attn.k_proj", y)
                                weightsK = statedict.pop(k_from)
                                k_from = "{}text_model.encoder.layers.{}.{}.{}".format(prefix_from, resblock, "self_attn.v_proj", y)
                                weightsV = statedict.pop(k_from)

                                k_to = "{}resblocks.{}.attn.in_proj_{}".format(prefix_to, resblock, y)

                                statedict[k_to] = torch.cat((weightsQ, weightsK, weightsV))
                        return statedict

                    asd = convert_transformers(asd, old_prefix, new_prefix, 32)
                    for k, v in asd.items():
                        sd[k] = v

                elif old_prefix == "":
                    for k, v in asd.items():
                        new_k = new_prefix + k
                        sd[new_k] = v
                else:
                    for k, v in asd.items():
                        new_k = k.replace(old_prefix, new_prefix)
                        sd[new_k] = v

    ##  CLIP-L
    CLIP_L = {     #   key to identify source model                                                    old_prefix
        'cond_stage_model.transformer.text_model.encoder.layers.0.layer_norm1.bias'         : 'cond_stage_model.transformer.',
        'conditioner.embedders.0.transformer.text_model.encoder.layers.0.layer_norm1.bias'  : 'conditioner.embedders.0.transformer.',
        'text_encoders.clip_l.transformer.text_model.encoder.layers.0.layer_norm1.bias'     : 'text_encoders.clip_l.transformer.',
        'text_model.encoder.layers.0.layer_norm1.bias'                                      : '',
        'transformer.resblocks.0.ln_1.bias'                                                 : 'transformer.'
    }

    for CLIP_key in CLIP_L.keys():
        if CLIP_key in asd and asd[CLIP_key].shape[0] == 768:
            new_prefix = prefix_L[model_type]
            old_prefix = CLIP_L[CLIP_key]

            if new_prefix is not None:
                if "resblocks" in CLIP_key: # need to convert
                    def transformers_convert(statedict, prefix_from, prefix_to, number):
                        keys_to_replace = {
                            "positional_embedding"  : "{}text_model.embeddings.position_embedding.weight",
                            "token_embedding.weight": "{}text_model.embeddings.token_embedding.weight",
                            "ln_final.weight"       : "{}text_model.final_layer_norm.weight",
                            "ln_final.bias"         : "{}text_model.final_layer_norm.bias",
                            "text_projection"       : "text_projection.weight",
                        }
                        resblock_to_replace = {
                            "ln_1"          : "layer_norm1",
                            "ln_2"          : "layer_norm2",
                            "mlp.c_fc"      : "mlp.fc1",
                            "mlp.c_proj"    : "mlp.fc2",
                            "attn.out_proj" : "self_attn.out_proj",
                        }

                        for k in keys_to_replace:
                            statedict[keys_to_replace[k].format(prefix_to)] = statedict.pop(k)

                        for resblock in range(number):
                            for y in ["weight", "bias"]:
                                for x in resblock_to_replace:
                                    k = "{}resblocks.{}.{}.{}".format(prefix_from, resblock, x, y)
                                    k_to = "{}text_model.encoder.layers.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y)
                                    statedict[k_to] = statedict.pop(k)

                                k_from = "{}resblocks.{}.attn.in_proj_{}".format(prefix_from, resblock, y)
                                weights = statedict.pop(k_from)
                                shape_from = weights.shape[0] // 3
                                for x in range(3):
                                    p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"]
                                    k_to = "{}text_model.encoder.layers.{}.{}.{}".format(prefix_to, resblock, p[x], y)
                                    statedict[k_to] = weights[shape_from*x:shape_from*(x + 1)]
                        return statedict

                    asd = transformers_convert(asd, old_prefix, new_prefix, 12)
                    for k, v in asd.items():
                        sd[k] = v
                
                elif old_prefix == "":
                    for k, v in asd.items():
                        new_k = new_prefix + k
                        sd[new_k] = v
                else:
                    for k, v in asd.items():
                        new_k = k.replace(old_prefix, new_prefix)
                        sd[new_k] = v


    if 'encoder.block.0.layer.0.SelfAttention.k.weight' in asd:
        keys_to_delete = [k for k in sd if k.startswith(f"{text_encoder_key_prefix}t5xxl.")]
        for k in keys_to_delete:
            del sd[k]
        for k, v in asd.items():
            sd[f"{text_encoder_key_prefix}t5xxl.transformer.{k}"] = v

    return sd


def preprocess_state_dict(sd):
    if not any(k.startswith("model.diffusion_model") for k in sd.keys()):
        sd = {f"model.diffusion_model.{k}": v for k, v in sd.items()}

    return sd


def split_state_dict(sd, additional_state_dicts: list = None):
    sd = load_torch_file(sd)
    sd = preprocess_state_dict(sd)
    guess = huggingface_guess.guess(sd)

    if isinstance(additional_state_dicts, list):
        for asd in additional_state_dicts:
            asd = load_torch_file(asd)
            sd = replace_state_dict(sd, asd, guess)
            del asd

    guess.clip_target = guess.clip_target(sd)
    guess.model_type = guess.model_type(sd)
    guess.ztsnr = 'ztsnr' in sd

    sd = guess.process_vae_state_dict(sd)

    state_dict = {
        guess.unet_target: try_filter_state_dict(sd, guess.unet_key_prefix),
        guess.vae_target: try_filter_state_dict(sd, guess.vae_key_prefix)
    }

    sd = guess.process_clip_state_dict(sd)

    for k, v in guess.clip_target.items():
        state_dict[v] = try_filter_state_dict(sd, [k + '.'])

    state_dict['ignore'] = sd

    print_dict = {k: len(v) for k, v in state_dict.items()}
    print(f'StateDict Keys: {print_dict}')

    del state_dict['ignore']

    return state_dict, guess

# To be removed once PR merged on huggingface_guess
chroma_is_in_huggingface_guess = hasattr(huggingface_guess.model_list, "Chroma")

if not chroma_is_in_huggingface_guess:
    class GuessChroma:
        huggingface_repo = 'Chroma'
        unet_extra_config = {
            'guidance_out_dim': 3072,
            'guidance_hidden_dim': 5120,
            'guidance_n_layers': 5
        }
        unet_remove_config = ['guidance_embed']
@torch.inference_mode()
def forge_loader(sd, additional_state_dicts=None):
    try:
        state_dicts, estimated_config = split_state_dict(sd, additional_state_dicts=additional_state_dicts)
    except:
        raise ValueError('Failed to recognize model type!')
    
    if not chroma_is_in_huggingface_guess \
        and estimated_config.huggingface_repo == "black-forest-labs/FLUX.1-schnell"  \
        and "transformer" in state_dicts \
        and "distilled_guidance_layer.layers.0.in_layer.bias" in state_dicts["transformer"]:
        estimated_config.huggingface_repo = GuessChroma.huggingface_repo
        for x in GuessChroma.unet_extra_config:
            estimated_config.unet_config[x] = GuessChroma.unet_extra_config[x]
        for x in GuessChroma.unet_remove_config:
            del estimated_config.unet_config[x]
        state_dicts['text_encoder'] = state_dicts['text_encoder_2']
        del state_dicts['text_encoder_2'] 
    repo_name = estimated_config.huggingface_repo

    local_path = os.path.join(dir_path, 'huggingface', repo_name)
    config: dict = DiffusionPipeline.load_config(local_path)
    huggingface_components = {}
    for component_name, v in config.items():
        if isinstance(v, list) and len(v) == 2:
            lib_name, cls_name = v
            component_sd = state_dicts.get(component_name, None)
            component = load_huggingface_component(estimated_config, component_name, lib_name, cls_name, local_path, component_sd)
            if component_sd is not None:
                del state_dicts[component_name]
            if component is not None:
                huggingface_components[component_name] = component

    yaml_config = None
    yaml_config_prediction_type = None

    try:
        import yaml
        from pathlib import Path
        config_filename = os.path.splitext(sd)[0] + '.yaml'
        if Path(config_filename).is_file():
            with open(config_filename, 'r') as stream:
                yaml_config = yaml.safe_load(stream)
    except ImportError:
        pass

    # Fix Huggingface prediction type using .yaml config or estimated config detection
    prediction_types = {
        'EPS': 'epsilon',
        'V_PREDICTION': 'v_prediction',
        'EDM': 'edm',
    }

    has_prediction_type = 'scheduler' in huggingface_components and hasattr(huggingface_components['scheduler'], 'config') and 'prediction_type' in huggingface_components['scheduler'].config

    if yaml_config is not None:
        yaml_config_prediction_type: str = (
                yaml_config.get('model', {}).get('params', {}).get('parameterization', '')
            or  yaml_config.get('model', {}).get('params', {}).get('denoiser_config', {}).get('params', {}).get('scaling_config', {}).get('target', '')
        )
        if yaml_config_prediction_type == 'v' or yaml_config_prediction_type.endswith(".VScaling"):
            yaml_config_prediction_type = 'v_prediction'
        else:
            # Use estimated prediction config if no suitable prediction type found
            yaml_config_prediction_type = ''

    if has_prediction_type:
        if yaml_config_prediction_type:
            huggingface_components['scheduler'].config.prediction_type = yaml_config_prediction_type
        else:
            huggingface_components['scheduler'].config.prediction_type = prediction_types.get(estimated_config.model_type.name, huggingface_components['scheduler'].config.prediction_type)

    if not chroma_is_in_huggingface_guess and estimated_config.huggingface_repo == "Chroma":
        return Chroma(estimated_config=estimated_config, huggingface_components=huggingface_components)
    for M in possible_models:
        if any(isinstance(estimated_config, x) for x in M.matched_guesses):
            return M(estimated_config=estimated_config, huggingface_components=huggingface_components)

    print('Failed to recognize model type!')
    return None