File size: 14,313 Bytes
77783a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# implementation of Chroma for Forge, inspired by https://github.com/lodestone-rock/ComfyUI_FluxMod

from dataclasses import dataclass

import math
import torch

from torch import nn
from einops import rearrange, repeat
from backend.attention import attention_function
from backend.utils import fp16_fix, tensor2parameter
from backend.nn.flux import attention, rope, timestep_embedding, EmbedND, MLPEmbedder, RMSNorm, QKNorm, SelfAttention

class Approximator(nn.Module):
    def __init__(self, in_dim: int, out_dim: int, hidden_dim: int, n_layers = 4):
        super().__init__()
        self.in_proj = nn.Linear(in_dim, hidden_dim, bias=True)
        self.layers = nn.ModuleList([MLPEmbedder(hidden_dim, hidden_dim) for x in range( n_layers)])
        self.norms = nn.ModuleList([RMSNorm( hidden_dim) for x in range( n_layers)])
        self.out_proj = nn.Linear(hidden_dim, out_dim)

    def forward(self, x):
        x = self.in_proj(x)
        for layer, norms in zip(self.layers, self.norms):
            x = x + layer(norms(x))
        x = self.out_proj(x)
        return x

@dataclass
class ModulationOut:
    shift: torch.Tensor
    scale: torch.Tensor
    gate: torch.Tensor

class DoubleStreamBlock(nn.Module):
    def __init__(self, hidden_size, num_heads, mlp_ratio, qkv_bias=False):
        super().__init__()
        mlp_hidden_dim = int(hidden_size * mlp_ratio)
        self.num_heads = num_heads
        self.hidden_size = hidden_size
        self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
        self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.img_mlp = nn.Sequential(
            nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
            nn.GELU(approximate="tanh"),
            nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
        )
        self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
        self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.txt_mlp = nn.Sequential(
            nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
            nn.GELU(approximate="tanh"),
            nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
        )

    def forward(self, img, txt, mod, pe):
        (img_mod1, img_mod2), (txt_mod1, txt_mod2) = mod
        img_modulated = self.img_norm1(img)
        img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
        img_qkv = self.img_attn.qkv(img_modulated)
        B, L, _ = img_qkv.shape
        H = self.num_heads
        D = img_qkv.shape[-1] // (3 * H)
        img_q, img_k, img_v = img_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4)
        img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
        txt_modulated = self.txt_norm1(txt)
        txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
        txt_qkv = self.txt_attn.qkv(txt_modulated)
        B, L, _ = txt_qkv.shape
        txt_q, txt_k, txt_v = txt_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4)
        txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
        q = torch.cat((txt_q, img_q), dim=2)
        k = torch.cat((txt_k, img_k), dim=2)
        v = torch.cat((txt_v, img_v), dim=2)
        attn = attention(q, k, v, pe=pe)
        txt_attn, img_attn = attn[:, :txt.shape[1]], attn[:, txt.shape[1]:]
        img = img + img_mod1.gate * self.img_attn.proj(img_attn)
        img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
        txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
        txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
        txt = fp16_fix(txt)
        return img, txt


class SingleStreamBlock(nn.Module):
    def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, qk_scale=None):
        super().__init__()
        self.hidden_dim = hidden_size
        self.num_heads = num_heads
        head_dim = hidden_size // num_heads
        self.scale = qk_scale or head_dim ** -0.5
        self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
        self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
        self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
        self.norm = QKNorm(head_dim)
        self.hidden_size = hidden_size
        self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.mlp_act = nn.GELU(approximate="tanh")

    def forward(self, x, mod, pe):
        x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
        qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
        del x_mod

        # q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
        qkv = qkv.view(qkv.size(0), qkv.size(1), 3, self.num_heads, self.hidden_size // self.num_heads)
        q, k, v = qkv.permute(2, 0, 3, 1, 4)
        del qkv

        q, k = self.norm(q, k, v)
        attn = attention(q, k, v, pe=pe)
        del q, k, v, pe
        output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), dim=2))
        del attn, mlp

        x = x + mod.gate * output
        x = fp16_fix(x)
        return x


class LastLayer(nn.Module):
    def __init__(self, hidden_size, patch_size, out_channels):
        super().__init__()
        self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)

    def forward(self, x, mod):
        shift, scale = mod
        shift = shift.squeeze(1)
        scale = scale.squeeze(1)
        x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
        x = self.linear(x)
        return x


class IntegratedChromaTransformer2DModel(nn.Module):
    def __init__(self, in_channels: int, vec_in_dim: int, context_in_dim: int, hidden_size: int, mlp_ratio: float, num_heads: int, depth: int, depth_single_blocks: int, axes_dim: list[int], theta: int, qkv_bias: bool, guidance_out_dim: int, guidance_hidden_dim: int, guidance_n_layers: int):
        super().__init__()

        self.in_channels = in_channels * 4
        self.out_channels = self.in_channels

        if hidden_size % num_heads != 0:
            raise ValueError(f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}")

        pe_dim = hidden_size // num_heads
        if sum(axes_dim) != pe_dim:
            raise ValueError(f"Got {axes_dim} but expected positional dim {pe_dim}")

        self.hidden_size = hidden_size
        self.num_heads = num_heads

        self.pe_embedder = EmbedND(dim=pe_dim, theta=theta, axes_dim=axes_dim)
        self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
        self.distilled_guidance_layer = Approximator(64, guidance_out_dim, guidance_hidden_dim, guidance_n_layers)
        self.txt_in = nn.Linear(context_in_dim, self.hidden_size)

        self.double_blocks = nn.ModuleList(
            [
                DoubleStreamBlock(
                    self.hidden_size,
                    self.num_heads,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                )
                for _ in range(depth)
            ]
        )

        self.single_blocks = nn.ModuleList(
            [
                SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=mlp_ratio)
                for _ in range(depth_single_blocks)
            ]
        )

        self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
        
    @staticmethod
    def distribute_modulations(tensor, single_block_count: int = 38, double_blocks_count: int = 19):
        """
        Distributes slices of the tensor into the block_dict as ModulationOut objects.

        Args:
            tensor (torch.Tensor): Input tensor with shape [batch_size, vectors, dim].
        """
        batch_size, vectors, dim = tensor.shape
        block_dict = {}
        for i in range(single_block_count):
            key = f"single_blocks.{i}.modulation.lin"
            block_dict[key] = None
        for i in range(double_blocks_count):
            key = f"double_blocks.{i}.img_mod.lin"
            block_dict[key] = None
        for i in range(double_blocks_count):
            key = f"double_blocks.{i}.txt_mod.lin"
            block_dict[key] = None
        block_dict["final_layer.adaLN_modulation.1"] = None
        idx = 0  # Index to keep track of the vector slices
        for key in block_dict.keys():
            if "single_blocks" in key:
                # Single block: 1 ModulationOut
                block_dict[key] = ModulationOut(
                    shift=tensor[:, idx:idx+1, :],
                    scale=tensor[:, idx+1:idx+2, :],
                    gate=tensor[:, idx+2:idx+3, :]
                )
                idx += 3  # Advance by 3 vectors
            elif "img_mod" in key:
                # Double block: List of 2 ModulationOut
                double_block = []
                for _ in range(2):  # Create 2 ModulationOut objects
                    double_block.append(
                        ModulationOut(
                            shift=tensor[:, idx:idx+1, :],
                            scale=tensor[:, idx+1:idx+2, :],
                            gate=tensor[:, idx+2:idx+3, :]
                        )
                    )
                    idx += 3  # Advance by 3 vectors per ModulationOut
                block_dict[key] = double_block
            elif "txt_mod" in key:
                # Double block: List of 2 ModulationOut
                double_block = []
                for _ in range(2):  # Create 2 ModulationOut objects
                    double_block.append(
                        ModulationOut(
                            shift=tensor[:, idx:idx+1, :],
                            scale=tensor[:, idx+1:idx+2, :],
                            gate=tensor[:, idx+2:idx+3, :]
                        )
                    )
                    idx += 3  # Advance by 3 vectors per ModulationOut
                block_dict[key] = double_block
            elif "final_layer" in key:
                # Final layer: 1 ModulationOut
                block_dict[key] = [
                    tensor[:, idx:idx+1, :],
                    tensor[:, idx+1:idx+2, :],
                ]
                idx += 2  # Advance by 2 vectors
        return block_dict
        
    def inner_forward(self, img, img_ids, txt, txt_ids, timesteps):
        if img.ndim != 3 or txt.ndim != 3:
            raise ValueError("Input img and txt tensors must have 3 dimensions.")
        img = self.img_in(img)
        device = img.device
        dtype = img.dtype # torch.bfloat16
        nb_double_block = len(self.double_blocks)
        nb_single_block = len(self.single_blocks)
        
        mod_index_length = nb_double_block*12 + nb_single_block*3 + 2
        distill_timestep = timestep_embedding(timesteps.detach().clone(), 16).to(device=device, dtype=dtype)
        distil_guidance = timestep_embedding(torch.zeros_like(timesteps), 16).to(device=device, dtype=dtype)
        modulation_index = timestep_embedding(torch.arange(mod_index_length), 32).to(device=device, dtype=dtype)
        modulation_index = modulation_index.unsqueeze(0).repeat(img.shape[0], 1, 1)
        timestep_guidance = torch.cat([distill_timestep, distil_guidance], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1)
        input_vec = torch.cat([timestep_guidance, modulation_index], dim=-1)
        mod_vectors = self.distilled_guidance_layer(input_vec)
        mod_vectors_dict = self.distribute_modulations(mod_vectors, nb_single_block, nb_double_block)
        
        txt = self.txt_in(txt)
        ids = torch.cat((txt_ids, img_ids), dim=1)
        del txt_ids, img_ids
        pe = self.pe_embedder(ids)
        del ids
        for i, block in enumerate(self.double_blocks):
            img_mod = mod_vectors_dict[f"double_blocks.{i}.img_mod.lin"]
            txt_mod = mod_vectors_dict[f"double_blocks.{i}.txt_mod.lin"]
            double_mod = [img_mod, txt_mod]
            img, txt = block(img=img, txt=txt, mod=double_mod, pe=pe)
        img = torch.cat((txt, img), 1)
        for i, block in enumerate(self.single_blocks):
            single_mod = mod_vectors_dict[f"single_blocks.{i}.modulation.lin"]
            img = block(img, mod=single_mod, pe=pe)
        del pe
        img = img[:, txt.shape[1]:, ...]
        final_mod = mod_vectors_dict["final_layer.adaLN_modulation.1"]
        img = self.final_layer(img, final_mod)
        return img

    def forward(self, x, timestep, context, **kwargs):
        bs, c, h, w = x.shape
        input_device = x.device
        input_dtype = x.dtype
        patch_size = 2
        pad_h = (patch_size - x.shape[-2] % patch_size) % patch_size
        pad_w = (patch_size - x.shape[-1] % patch_size) % patch_size
        x = torch.nn.functional.pad(x, (0, pad_w, 0, pad_h), mode="circular")
        img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
        del x, pad_h, pad_w
        h_len = ((h + (patch_size // 2)) // patch_size)
        w_len = ((w + (patch_size // 2)) // patch_size)
        img_ids = torch.zeros((h_len, w_len, 3), device=input_device, dtype=input_dtype)
        img_ids[..., 1] = img_ids[..., 1] + torch.linspace(0, h_len - 1, steps=h_len, device=input_device, dtype=input_dtype)[:, None]
        img_ids[..., 2] = img_ids[..., 2] + torch.linspace(0, w_len - 1, steps=w_len, device=input_device, dtype=input_dtype)[None, :]
        img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
        txt_ids = torch.zeros((bs, context.shape[1], 3), device=input_device, dtype=input_dtype)
        del input_device, input_dtype
        out = self.inner_forward(img, img_ids, context, txt_ids, timestep)
        del img, img_ids, txt_ids, timestep, context
        out = rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:, :, :h, :w]
        del h_len, w_len, bs
        return out