File size: 13,039 Bytes
dfbd641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import gradio as gr
import requests
from bs4 import BeautifulSoup
import os
import json
import logging
import pandas as pd # Useful for creating the dataframe output

# ------------------------
# Configuration
# ------------------------
WORDLIFT_API_URL = "https://api.wordlift.io/content-evaluations"
WORDLIFT_API_KEY = os.getenv("WORDLIFT_API_KEY") # Get API key from environment variable

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# ------------------------
# Custom CSS & Theme
# ------------------------

css = """
@import url('https://fonts.googleapis.com/css2?family=Open+Sans:wght@300;400;600;700&display=swap');
body {
    font-family: 'Open Sans', sans-serif !important;
}
.primary-btn {
    background-color: #3452db !important;
    color: white !important;
}
.primary-btn:hover {
    background-color: #2a41af !important;
}
.gradio-container {
    max-width: 1200px; /* Limit width for better readability */
    margin: auto;
}
"""

theme = gr.themes.Soft(
    primary_hue=gr.themes.colors.Color(
        name="blue",
        c50="#eef1ff",
        c100="#e0e5ff",
        c200="#c3cbff",
        c300="#a5b2ff",
        c400="#8798ff",
        c500="#6a7eff",
        c600="#3452db",
        c700="#2a41af",
        c800="#1f3183",
        c900="#152156",
        c950="#0a102b",
    )
)

# ------------------------
# Content Fetching Logic
# ------------------------

def fetch_content_from_url(url: str, timeout: int = 15) -> str:
    """Fetches main text content from a URL."""
    logger.info(f"Fetching content from: {url}")
    try:
        headers = {
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
        }
        response = requests.get(url, headers=headers, timeout=timeout)
        response.raise_for_status() # Raise an exception for bad status codes

        soup = BeautifulSoup(response.content, 'html.parser')

        # Attempt to find main content block
        main_content = soup.find('main') or soup.find('article')

        if main_content:
             # Extract text from common text-containing tags within the main block
            text_elements = main_content.find_all(['p', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'li', 'blockquote'])
            text = ' '.join([elem.get_text() for elem in text_elements])
        else:
            # Fallback to extracting text from body if no main block found
            text_elements = soup.body.find_all(['p', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'li', 'blockquote'])
            text = ' '.join([elem.get_text() for elem in text_elements])
            logger.warning(f"No <main> or <article> found for {url}, extracting from body.")


        # Clean up extra whitespace
        text = ' '.join(text.split())

        # Limit text length to avoid excessively large API calls (adjust as needed)
        max_text_length = 150000 # approx 25k words, adjust based on API limits/cost
        if len(text) > max_text_length:
            logger.warning(f"Content for {url} is too long ({len(text)} chars), truncating to {max_text_length} chars.")
            text = text[:max_text_length] + "..." # Indicate truncation

        return text

    except requests.exceptions.RequestException as e:
        logger.error(f"Failed to fetch content from {url}: {e}")
        return None
    except Exception as e:
        logger.error(f"Error processing content from {url}: {e}")
        return None

# ------------------------
# WordLift API Call Logic
# ------------------------

def call_wordlift_api(text: str, keywords: Optional[List[str]] = None) -> Optional[Dict[str, Any]]:
    """Calls the WordLift Content Evaluation API."""
    if not WORDLIFT_API_KEY:
        logger.error("WORDLIFT_API_KEY environment variable not set.")
        return {"error": "API key not configured."}

    if not text:
        return {"error": "No content provided or fetched."}

    payload = {
        "text": text,
        "keywords": keywords if keywords else []
    }

    headers = {
        'Authorization': f'Key {WORDLIFT_API_KEY}',
        'Content-Type': 'application/json',
        'Accept': 'application/json'
    }

    logger.info(f"Calling WordLift API with text length {len(text)} and {len(keywords or [])} keywords.")

    try:
        response = requests.post(WORDLIFT_API_URL, headers=headers, json=payload, timeout=60) # Increased timeout
        response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx)
        return response.json()

    except requests.exceptions.HTTPError as e:
        logger.error(f"WordLift API HTTP error: {e.response.status_code} - {e.response.text}")
        try:
            error_detail = e.response.json()
        except json.JSONDecodeError:
            error_detail = e.response.text
        return {"error": f"API returned status code {e.response.status_code}", "details": error_detail}
    except requests.exceptions.RequestException as e:
        logger.error(f"WordLift API request error: {e}")
        return {"error": f"API request failed: {e}"}
    except Exception as e:
        logger.error(f"Unexpected error during API call: {e}")
        return {"error": f"An unexpected error occurred: {e}"}


# ------------------------
# Main Evaluation Batch Function
# ------------------------

def evaluate_urls_batch(url_data: pd.DataFrame):
    """
    Evaluates a batch of URLs using the WordLift API.

    Args:
        url_data: A pandas DataFrame with columns ['URL', 'Target Keywords (comma-separated)'].

    Returns:
        A tuple containing:
        - A pandas DataFrame with the summary results.
        - A dictionary containing the full results (including errors) keyed by URL.
    """
    if not url_data or url_data.empty:
        return pd.DataFrame(columns=['URL', 'Status', 'Overall Score', 'Content Purpose', 'Content Accuracy', 'Content Depth', 'Readability Score (API)', 'Readability Grade Level', 'SEO Score', 'Word Count', 'Error/Details']), {}

    summary_results = []
    full_results = {}

    for index, row in url_data.iterrows():
        url = row['URL'].strip()
        keywords_str = row['Target Keywords (comma-separated)'].strip() if row['Target Keywords (comma-separated)'] else ""
        keywords = [kw.strip() for kw in keywords_str.split(',') if kw.strip()]

        if not url:
            summary_results.append([url, "Skipped", None, None, None, None, None, None, None, None, "Empty URL"])
            full_results[url if url else f"Row_{index}"] = {"status": "Skipped", "error": "Empty URL input."}
            continue

        logger.info(f"Processing URL: {url} with keywords: {keywords}")

        # 1. Fetch Content
        content = fetch_content_from_url(url)

        if content is None or not content.strip():
            status = "Failed"
            error_msg = "Failed to fetch or extract content."
            summary_results.append([url, status, None, None, None, None, None, None, None, None, error_msg])
            full_results[url] = {"status": status, "error": error_msg}
            logger.error(f"Processing failed for {url}: {error_msg}")
            continue # Move to next URL

        # 2. Call WordLift API
        api_result = call_wordlift_api(content, keywords)

        # 3. Process API Result
        summary_row = [url]
        if api_result and "error" not in api_result:
            status = "Success"
            qs = api_result.get('quality_score', {})
            breakdown = qs.get('breakdown', {})
            content_breakdown = breakdown.get('content', {})
            readability_breakdown = breakdown.get('readability', {})
            seo_breakdown = breakdown.get('seo', {})
            metadata = api_result.get('metadata', {})

            summary_row.extend([
                status,
                qs.get('overall', None),
                content_breakdown.get('purpose', None),
                content_breakdown.get('accuracy', None),
                content_breakdown.get('depth', None),
                readability_breakdown.get('score', None), # API's readability score (e.g. 2.5)
                readability_breakdown.get('grade_level', None),
                seo_breakdown.get('score', None),
                metadata.get('word_count', None),
                None # No error
            ])
            full_results[url] = api_result # Store full API result

        else:
            status = "Failed"
            error_msg = api_result.get("error", "Unknown API error.") if api_result else "API call failed."
            details = api_result.get("details", "") if api_result else ""
            summary_row.extend([
                status,
                None, None, None, None, None, None, None, None,
                f"{error_msg} {details}"
            ])
            full_results[url] = {"status": status, "error": error_msg, "details": details}
            logger.error(f"API call failed for {url}: {error_msg} {details}")

        summary_results.append(summary_row)

    # Create pandas DataFrame for summary output
    summary_df = pd.DataFrame(summary_results, columns=[
        'URL', 'Status', 'Overall Score', 'Content Purpose',
        'Content Accuracy', 'Content Depth', 'Readability Score (API)',
        'Readability Grade Level', 'SEO Score', 'Word Count', 'Error/Details'
    ])

    # Format numeric columns for display if they are not None
    for col in ['Overall Score', 'Content Purpose', 'Content Accuracy', 'Content Depth', 'Readability Score (API)', 'Readability Grade Level', 'SEO Score', 'Word Count']:
        if col in summary_df.columns:
             # Convert to numeric, coercing errors, then format
            summary_df[col] = pd.to_numeric(summary_df[col], errors='coerce')
            if col in ['Overall Score', 'Readability Score (API)', 'SEO Score']:
                 summary_df[col] = summary_df[col].apply(lambda x: f'{x:.1f}' if pd.notna(x) else '-')
            else:
                 summary_df[col] = summary_df[col].apply(lambda x: f'{int(x)}' if pd.notna(x) else '-')


    return summary_df, full_results

# ------------------------
# Gradio Blocks Interface Setup
# ------------------------

with gr.Blocks(css=css, theme=theme) as demo:
    gr.Markdown("# WordLift Multi-URL Content Evaluator")
    gr.Markdown(
        "Enter up to 30 URLs in the table below. "
        "Optionally, provide comma-separated target keywords for each URL. "
        "The app will fetch content from each URL and evaluate it using the WordLift API."
    )

    with gr.Row():
        with gr.Column():
            url_input_df = gr.Dataframe(
                headers=["URL", "Target Keywords (comma-separated)"],
                datatype=["str", "str"],
                row_count=(1, 30), # Allow adding rows up to 30
                col_count=(2, "fixed"),
                value=[["https://example.com/article1", "keyword A, keyword B"], ["https://example.com/article2", ""]], # Default examples
                label="URLs and Keywords"
            )
            submit_button = gr.Button("Evaluate All URLs", elem_classes=["primary-btn"])

    gr.Markdown("## Evaluation Results")

    with gr.Column():
        summary_output_df = gr.DataFrame(
            label="Summary Results",
            headers=['URL', 'Status', 'Overall Score', 'Content Purpose', 'Content Accuracy', 'Content Depth', 'Readability Score (API)', 'Readability Grade Level', 'SEO Score', 'Word Count', 'Error/Details'],
            datatype=["str", "str", "str", "str", "str", "str", "str", "str", "str", "str", "str"], # Use str to handle '-' for missing values
            wrap=True # Wrap text in columns
        )
        with gr.Accordion("Full JSON Results", open=False):
             full_results_json = gr.JSON(label="Raw API Results per URL")

    submit_button.click(
        fn=evaluate_urls_batch,
        inputs=[url_input_df],
        outputs=[summary_output_df, full_results_json]
    )

# Launch the app
if __name__ == "__main__":
    if not WORDLIFT_API_KEY:
        logger.error("\n----------------------------------------------------------")
        logger.error("WORDLIFT_API_KEY environment variable is not set.")
        logger.error("Please set it before running the script:")
        logger.error("  export WORDLIFT_API_KEY='YOUR_API_KEY'")
        logger.error("Or if using a .env file and python-dotenv:")
        logger.error("  pip install python-dotenv")
        logger.error("  # Add WORDLIFT_API_KEY=YOUR_API_KEY to a .env file")
        logger.error("  # import dotenv; dotenv.load_dotenv()")
        logger.error("  # in your script before getting the key.")
        logger.error("----------------------------------------------------------\n")
        # Optionally exit or raise error here if the key is strictly required to launch
        # exit()
        pass # Allow launching, but API calls will fail

    logger.info("Launching Gradio app...")
    demo.launch()