Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,7 +4,9 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
| 4 |
from huggingface_hub import login
|
| 5 |
import os
|
| 6 |
import matplotlib.pyplot as plt
|
|
|
|
| 7 |
import numpy as np
|
|
|
|
| 8 |
|
| 9 |
# Authentification
|
| 10 |
login(token=os.environ["HF_TOKEN"])
|
|
@@ -30,18 +32,22 @@ models = [
|
|
| 30 |
model = None
|
| 31 |
tokenizer = None
|
| 32 |
|
| 33 |
-
def load_model(model_name):
|
| 34 |
global model, tokenizer
|
| 35 |
try:
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
return f"Modèle {model_name} chargé avec succès."
|
| 46 |
except Exception as e:
|
| 47 |
return f"Erreur lors du chargement du modèle : {str(e)}"
|
|
@@ -68,12 +74,10 @@ def analyze_next_token(input_text, temperature, top_p, top_k):
|
|
| 68 |
|
| 69 |
prob_text = "\n".join([f"{word}: {prob:.4f}" for word, prob in prob_data.items()])
|
| 70 |
|
| 71 |
-
#
|
| 72 |
-
|
| 73 |
-
if hasattr(outputs, 'attentions') and outputs.attentions is not None:
|
| 74 |
-
attention_text = "Attention disponible"
|
| 75 |
|
| 76 |
-
return prob_text,
|
| 77 |
except Exception as e:
|
| 78 |
return f"Erreur lors de l'analyse : {str(e)}", None, None
|
| 79 |
|
|
@@ -89,16 +93,14 @@ def generate_text(input_text, temperature, top_p, top_k):
|
|
| 89 |
with torch.no_grad():
|
| 90 |
outputs = model.generate(
|
| 91 |
**inputs,
|
| 92 |
-
max_new_tokens=1,
|
| 93 |
temperature=temperature,
|
| 94 |
top_p=top_p,
|
| 95 |
top_k=top_k
|
| 96 |
)
|
| 97 |
|
| 98 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 99 |
-
#
|
| 100 |
-
new_word = generated_text[len(input_text):].strip()
|
| 101 |
-
return new_word
|
| 102 |
except Exception as e:
|
| 103 |
return f"Erreur lors de la génération : {str(e)}"
|
| 104 |
|
|
@@ -107,7 +109,7 @@ def plot_probabilities(prob_data):
|
|
| 107 |
probs = list(prob_data.values())
|
| 108 |
|
| 109 |
fig, ax = plt.subplots(figsize=(10, 5))
|
| 110 |
-
|
| 111 |
ax.set_title("Probabilités des tokens suivants les plus probables")
|
| 112 |
ax.set_xlabel("Tokens")
|
| 113 |
ax.set_ylabel("Probabilité")
|
|
@@ -115,6 +117,20 @@ def plot_probabilities(prob_data):
|
|
| 115 |
plt.tight_layout()
|
| 116 |
return fig
|
| 117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
def reset():
|
| 119 |
global model, tokenizer
|
| 120 |
model = None
|
|
@@ -138,24 +154,25 @@ with gr.Blocks() as demo:
|
|
| 138 |
analyze_button = gr.Button("Analyser le prochain token")
|
| 139 |
|
| 140 |
next_token_probs = gr.Textbox(label="Probabilités du prochain token")
|
| 141 |
-
attention_info = gr.Textbox(label="Information sur l'attention")
|
| 142 |
|
| 143 |
-
|
|
|
|
|
|
|
| 144 |
|
| 145 |
generate_button = gr.Button("Générer le prochain mot")
|
| 146 |
-
|
| 147 |
|
| 148 |
reset_button = gr.Button("Réinitialiser")
|
| 149 |
|
| 150 |
load_button.click(load_model, inputs=[model_dropdown], outputs=[load_output])
|
| 151 |
analyze_button.click(analyze_next_token,
|
| 152 |
inputs=[input_text, temperature, top_p, top_k],
|
| 153 |
-
outputs=[next_token_probs,
|
| 154 |
generate_button.click(generate_text,
|
| 155 |
inputs=[input_text, temperature, top_p, top_k],
|
| 156 |
-
outputs=[
|
| 157 |
reset_button.click(reset,
|
| 158 |
-
outputs=[input_text, temperature, top_p, top_k, next_token_probs,
|
| 159 |
|
| 160 |
if __name__ == "__main__":
|
| 161 |
demo.launch()
|
|
|
|
| 4 |
from huggingface_hub import login
|
| 5 |
import os
|
| 6 |
import matplotlib.pyplot as plt
|
| 7 |
+
import seaborn as sns
|
| 8 |
import numpy as np
|
| 9 |
+
import time
|
| 10 |
|
| 11 |
# Authentification
|
| 12 |
login(token=os.environ["HF_TOKEN"])
|
|
|
|
| 32 |
model = None
|
| 33 |
tokenizer = None
|
| 34 |
|
| 35 |
+
def load_model(model_name, progress=gr.Progress()):
|
| 36 |
global model, tokenizer
|
| 37 |
try:
|
| 38 |
+
for i in progress.tqdm(range(100)):
|
| 39 |
+
time.sleep(0.01) # Simuler le chargement
|
| 40 |
+
if i == 25:
|
| 41 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 42 |
+
elif i == 75:
|
| 43 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 44 |
+
model_name,
|
| 45 |
+
torch_dtype=torch.bfloat16,
|
| 46 |
+
device_map="auto",
|
| 47 |
+
attn_implementation="eager"
|
| 48 |
+
)
|
| 49 |
+
if tokenizer.pad_token is None:
|
| 50 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 51 |
return f"Modèle {model_name} chargé avec succès."
|
| 52 |
except Exception as e:
|
| 53 |
return f"Erreur lors du chargement du modèle : {str(e)}"
|
|
|
|
| 74 |
|
| 75 |
prob_text = "\n".join([f"{word}: {prob:.4f}" for word, prob in prob_data.items()])
|
| 76 |
|
| 77 |
+
# Alternative pour le mécanisme d'attention
|
| 78 |
+
attention_heatmap = plot_attention_alternative(inputs["input_ids"][0], last_token_logits)
|
|
|
|
|
|
|
| 79 |
|
| 80 |
+
return prob_text, attention_heatmap, prob_plot
|
| 81 |
except Exception as e:
|
| 82 |
return f"Erreur lors de l'analyse : {str(e)}", None, None
|
| 83 |
|
|
|
|
| 93 |
with torch.no_grad():
|
| 94 |
outputs = model.generate(
|
| 95 |
**inputs,
|
| 96 |
+
max_new_tokens=1,
|
| 97 |
temperature=temperature,
|
| 98 |
top_p=top_p,
|
| 99 |
top_k=top_k
|
| 100 |
)
|
| 101 |
|
| 102 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 103 |
+
return generated_text # Retourne l'input + le nouveau mot
|
|
|
|
|
|
|
| 104 |
except Exception as e:
|
| 105 |
return f"Erreur lors de la génération : {str(e)}"
|
| 106 |
|
|
|
|
| 109 |
probs = list(prob_data.values())
|
| 110 |
|
| 111 |
fig, ax = plt.subplots(figsize=(10, 5))
|
| 112 |
+
sns.barplot(x=words, y=probs, ax=ax)
|
| 113 |
ax.set_title("Probabilités des tokens suivants les plus probables")
|
| 114 |
ax.set_xlabel("Tokens")
|
| 115 |
ax.set_ylabel("Probabilité")
|
|
|
|
| 117 |
plt.tight_layout()
|
| 118 |
return fig
|
| 119 |
|
| 120 |
+
def plot_attention_alternative(input_ids, last_token_logits):
|
| 121 |
+
input_tokens = tokenizer.convert_ids_to_tokens(input_ids)
|
| 122 |
+
attention_scores = torch.nn.functional.softmax(last_token_logits, dim=-1)
|
| 123 |
+
top_k = min(len(input_tokens), 10) # Limiter à 10 tokens pour la lisibilité
|
| 124 |
+
top_attention_scores, _ = torch.topk(attention_scores, top_k)
|
| 125 |
+
|
| 126 |
+
fig, ax = plt.subplots(figsize=(12, 6))
|
| 127 |
+
sns.heatmap(top_attention_scores.unsqueeze(0), annot=True, cmap="YlOrRd", cbar=False, ax=ax)
|
| 128 |
+
ax.set_xticklabels(input_tokens[-top_k:], rotation=45, ha="right")
|
| 129 |
+
ax.set_yticklabels(["Attention"], rotation=0)
|
| 130 |
+
ax.set_title("Scores d'attention pour les derniers tokens")
|
| 131 |
+
plt.tight_layout()
|
| 132 |
+
return fig
|
| 133 |
+
|
| 134 |
def reset():
|
| 135 |
global model, tokenizer
|
| 136 |
model = None
|
|
|
|
| 154 |
analyze_button = gr.Button("Analyser le prochain token")
|
| 155 |
|
| 156 |
next_token_probs = gr.Textbox(label="Probabilités du prochain token")
|
|
|
|
| 157 |
|
| 158 |
+
with gr.Row():
|
| 159 |
+
attention_plot = gr.Plot(label="Visualisation de l'attention")
|
| 160 |
+
prob_plot = gr.Plot(label="Probabilités des tokens suivants")
|
| 161 |
|
| 162 |
generate_button = gr.Button("Générer le prochain mot")
|
| 163 |
+
generated_text = gr.Textbox(label="Texte généré")
|
| 164 |
|
| 165 |
reset_button = gr.Button("Réinitialiser")
|
| 166 |
|
| 167 |
load_button.click(load_model, inputs=[model_dropdown], outputs=[load_output])
|
| 168 |
analyze_button.click(analyze_next_token,
|
| 169 |
inputs=[input_text, temperature, top_p, top_k],
|
| 170 |
+
outputs=[next_token_probs, attention_plot, prob_plot])
|
| 171 |
generate_button.click(generate_text,
|
| 172 |
inputs=[input_text, temperature, top_p, top_k],
|
| 173 |
+
outputs=[generated_text])
|
| 174 |
reset_button.click(reset,
|
| 175 |
+
outputs=[input_text, temperature, top_p, top_k, next_token_probs, attention_plot, prob_plot, generated_text])
|
| 176 |
|
| 177 |
if __name__ == "__main__":
|
| 178 |
demo.launch()
|