Spaces:
Sleeping
Sleeping
| # coding=utf-8 | |
| # Copyright 2018 Hao Tan, Mohit Bansal, and the HuggingFace team | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ PyTorch lxmert model. """ | |
| import math | |
| import os | |
| import warnings | |
| import copy | |
| from dataclasses import dataclass | |
| from typing import Optional, Tuple | |
| import torch | |
| from torch import nn | |
| from torch.nn import CrossEntropyLoss, SmoothL1Loss | |
| from lxmert.lxmert.src.layers import * | |
| from transformers.file_utils import ( | |
| ModelOutput, | |
| add_code_sample_docstrings, | |
| add_start_docstrings, | |
| add_start_docstrings_to_model_forward, | |
| replace_return_docstrings, | |
| ) | |
| from transformers.modeling_utils import PreTrainedModel | |
| from transformers.utils import logging | |
| from transformers.configuration_lxmert import LxmertConfig | |
| logger = logging.get_logger(__name__) | |
| _CONFIG_FOR_DOC = "LxmertConfig" | |
| _TOKENIZER_FOR_DOC = "LxmertTokenizer" | |
| LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
| "unc-nlp/lxmert-base-uncased", | |
| ] | |
| ACT2FN = { | |
| "relu": ReLU, | |
| "tanh": Tanh, | |
| "gelu": GELU, | |
| } | |
| class LxmertModelOutput(ModelOutput): | |
| """ | |
| Lxmert's outputs that contain the last hidden states, pooled outputs, and attention probabilities for the language, | |
| visual, and, cross-modality encoders. (note: the visual encoder in Lxmert is referred to as the "relation-ship" | |
| encoder") | |
| Args: | |
| language_output (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): | |
| Sequence of hidden-states at the output of the last layer of the language encoder. | |
| vision_output (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): | |
| Sequence of hidden-states at the output of the last layer of the visual encoder. | |
| pooled_output (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, hidden_size)`): | |
| Last layer hidden-state of the first token of the sequence (classification, CLS, token) further processed | |
| by a Linear layer and a Tanh activation function. The Linear | |
| language_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
| Tuple of :obj:`torch.FloatTensor` (one for input features + one for the output of each cross-modality | |
| layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
| vision_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
| Tuple of :obj:`torch.FloatTensor` (one for input features + one for the output of each cross-modality | |
| layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
| language_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
| Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
| sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the | |
| weighted average in the self-attention heads. | |
| vision_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
| Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
| sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the | |
| weighted average in the self-attention heads. | |
| cross_encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
| Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
| sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the | |
| weighted average in the self-attention heads. | |
| """ | |
| language_output: Optional[torch.FloatTensor] = None | |
| vision_output: Optional[torch.FloatTensor] = None | |
| pooled_output: Optional[torch.FloatTensor] = None | |
| language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
| vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
| language_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
| vision_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
| cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
| class LxmertForQuestionAnsweringOutput(ModelOutput): | |
| """ | |
| Output type of :class:`~transformers.LxmertForQuestionAnswering`. | |
| Args: | |
| loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`): | |
| Total loss as the sum of the masked language modeling loss and the next sequence prediction | |
| (classification) loss.k. | |
| question_answering_score: (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, n_qa_answers)`, `optional`): | |
| Prediction scores of question answering objective (classification). | |
| language_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
| Tuple of :obj:`torch.FloatTensor` (one for input features + one for the output of each cross-modality | |
| layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
| vision_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
| Tuple of :obj:`torch.FloatTensor` (one for input features + one for the output of each cross-modality | |
| layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
| language_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
| Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
| sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the | |
| weighted average in the self-attention heads. | |
| vision_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
| Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
| sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the | |
| weighted average in the self-attention heads. | |
| cross_encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
| Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
| sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the | |
| weighted average in the self-attention heads. | |
| """ | |
| loss: Optional[torch.FloatTensor] = None | |
| question_answering_score: Optional[torch.FloatTensor] = None | |
| language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
| vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
| language_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
| vision_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
| cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
| class LxmertForPreTrainingOutput(ModelOutput): | |
| """ | |
| Output type of :class:`~transformers.LxmertForPreTraining`. | |
| Args: | |
| loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`): | |
| Total loss as the sum of the masked language modeling loss and the next sequence prediction | |
| (classification) loss. | |
| prediction_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): | |
| Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
| cross_relationship_score: (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`): | |
| Prediction scores of the textual matching objective (classification) head (scores of True/False | |
| continuation before SoftMax). | |
| question_answering_score: (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, n_qa_answers)`): | |
| Prediction scores of question answering objective (classification). | |
| language_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
| Tuple of :obj:`torch.FloatTensor` (one for input features + one for the output of each cross-modality | |
| layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
| vision_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): | |
| Tuple of :obj:`torch.FloatTensor` (one for input features + one for the output of each cross-modality | |
| layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. | |
| language_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
| Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
| sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the | |
| weighted average in the self-attention heads. | |
| vision_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
| Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
| sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the | |
| weighted average in the self-attention heads. | |
| cross_encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``): | |
| Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, | |
| sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the | |
| weighted average in the self-attention heads. | |
| """ | |
| loss: [torch.FloatTensor] = None | |
| prediction_logits: Optional[torch.FloatTensor] = None | |
| cross_relationship_score: Optional[torch.FloatTensor] = None | |
| question_answering_score: Optional[torch.FloatTensor] = None | |
| language_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
| vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
| language_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
| vision_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
| cross_encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None | |
| def load_tf_weights_in_lxmert(model, config, tf_checkpoint_path): | |
| """Load tf checkpoints in a pytorch model.""" | |
| try: | |
| import re | |
| import numpy as np | |
| import tensorflow as tf | |
| except ImportError: | |
| logger.error( | |
| "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " | |
| "https://www.tensorflow.org/install/ for installation instructions." | |
| ) | |
| raise | |
| tf_path = os.path.abspath(tf_checkpoint_path) | |
| logger.info("Converting TensorFlow checkpoint from {}".format(tf_path)) | |
| # Load weights from TF model | |
| init_vars = tf.train.list_variables(tf_path) | |
| names = [] | |
| arrays = [] | |
| for name, shape in init_vars: | |
| logger.info("Loading TF weight {} with shape {}".format(name, shape)) | |
| array = tf.train.load_variable(tf_path, name) | |
| names.append(name) | |
| arrays.append(array) | |
| for name, array in zip(names, arrays): | |
| name = name.split("/") | |
| # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v | |
| # which are not required for using pretrained model | |
| if any( | |
| n | |
| in [ | |
| "adam_v", | |
| "adam_m", | |
| "AdamWeightDecayOptimizer", | |
| "AdamWeightDecayOptimizer_1", | |
| "global_step", | |
| ] | |
| for n in name | |
| ): | |
| logger.info("Skipping {}".format("/".join(name))) | |
| continue | |
| pointer = model | |
| for m_name in name: | |
| if re.fullmatch(r"[A-Za-z]+_\d+", m_name): | |
| scope_names = re.split(r"_(\d+)", m_name) | |
| else: | |
| scope_names = [m_name] | |
| if scope_names[0] == "kernel" or scope_names[0] == "gamma": | |
| pointer = getattr(pointer, "weight") | |
| elif scope_names[0] == "output_bias" or scope_names[0] == "beta": | |
| pointer = getattr(pointer, "bias") | |
| elif scope_names[0] == "output_weights": | |
| pointer = getattr(pointer, "weight") | |
| elif scope_names[0] == "squad": | |
| pointer = getattr(pointer, "classifier") | |
| else: | |
| try: | |
| pointer = getattr(pointer, scope_names[0]) | |
| except AttributeError: | |
| logger.info("Skipping {}".format("/".join(name))) | |
| continue | |
| if len(scope_names) >= 2: | |
| num = int(scope_names[1]) | |
| pointer = pointer[num] | |
| if m_name[-11:] == "_embeddings": | |
| pointer = getattr(pointer, "weight") | |
| elif m_name == "kernel": | |
| array = np.transpose(array) | |
| try: | |
| assert pointer.shape == array.shape | |
| except AssertionError as e: | |
| e.args += (pointer.shape, array.shape) | |
| raise | |
| logger.info("Initialize PyTorch weight {}".format(name)) | |
| pointer.data = torch.from_numpy(array) | |
| return model | |
| class LxmertEmbeddings(nn.Module): | |
| """Construct the embeddings from word, position and token_type embeddings.""" | |
| def __init__(self, config): | |
| super().__init__() | |
| self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) | |
| self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size, padding_idx=0) | |
| self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size, padding_idx=0) | |
| # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
| # any TensorFlow checkpoint file | |
| self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12) | |
| self.dropout = Dropout(config.hidden_dropout_prob) | |
| self.add1 = Add() | |
| self.add2 = Add() | |
| def forward(self, input_ids, token_type_ids=None, inputs_embeds=None): | |
| if input_ids is not None: | |
| input_shape = input_ids.size() | |
| device = input_ids.device | |
| else: | |
| input_shape = inputs_embeds.size()[:-1] | |
| device = inputs_embeds.device | |
| seq_length = input_shape[1] | |
| position_ids = torch.arange(seq_length, dtype=torch.long, device=device) | |
| position_ids = position_ids.unsqueeze(0).expand(input_shape) | |
| if token_type_ids is None: | |
| token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) | |
| if inputs_embeds is None: | |
| inputs_embeds = self.word_embeddings(input_ids) | |
| position_embeddings = self.position_embeddings(position_ids) | |
| token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
| # embeddings = inputs_embeds + position_embeddings + token_type_embeddings | |
| embeddings = self.add1([token_type_embeddings, position_embeddings]) | |
| embeddings = self.add2([embeddings, inputs_embeds]) | |
| embeddings = self.LayerNorm(embeddings) | |
| embeddings = self.dropout(embeddings) | |
| return embeddings | |
| def relprop(self, cam, **kwargs): | |
| cam = self.dropout.relprop(cam, **kwargs) | |
| cam = self.LayerNorm.relprop(cam, **kwargs) | |
| # [inputs_embeds, position_embeddings, token_type_embeddings] | |
| (cam) = self.add2.relprop(cam, **kwargs) | |
| return cam | |
| class LxmertAttention(nn.Module): | |
| def __init__(self, config, ctx_dim=None): | |
| super().__init__() | |
| if config.hidden_size % config.num_attention_heads != 0: | |
| raise ValueError( | |
| "The hidden size (%d) is not a multiple of the number of attention " | |
| "heads (%d)" % (config.hidden_size, config.num_attention_heads) | |
| ) | |
| self.num_attention_heads = config.num_attention_heads | |
| self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
| self.head_size = self.num_attention_heads * self.attention_head_size | |
| # visual_dim = 2048 | |
| if ctx_dim is None: | |
| ctx_dim = config.hidden_size | |
| self.query = Linear(config.hidden_size, self.head_size) | |
| self.key = Linear(ctx_dim, self.head_size) | |
| self.value = Linear(ctx_dim, self.head_size) | |
| self.dropout = Dropout(config.attention_probs_dropout_prob) | |
| self.matmul1 = MatMul() | |
| self.matmul2 = MatMul() | |
| self.softmax = Softmax(dim=-1) | |
| self.add = Add() | |
| self.mul = Mul() | |
| self.head_mask = None | |
| self.attention_mask = None | |
| self.clone = Clone() | |
| self.attn = None | |
| self.attn_gradients = None | |
| self.attn_cam = None | |
| def get_attn(self): | |
| return self.attn | |
| def save_attn(self, attn): | |
| self.attn = attn | |
| def get_attn_cam(self): | |
| return self.attn_cam | |
| def save_attn_cam(self, attn_cam): | |
| self.attn_cam = attn_cam | |
| def save_attn_gradients(self, attn_gradients): | |
| self.attn_gradients = attn_gradients | |
| def get_attn_gradients(self): | |
| return self.attn_gradients | |
| def transpose_for_scores(self, x): | |
| new_x_shape = x.size()[:-1] + ( | |
| self.num_attention_heads, | |
| self.attention_head_size, | |
| ) | |
| x = x.view(*new_x_shape) | |
| return x.permute(0, 2, 1, 3) | |
| def transpose_for_scores_relprop(self, x): | |
| return x.permute(0, 2, 1, 3).flatten(2) | |
| def forward(self, hidden_states, context, attention_mask=None, output_attentions=False): | |
| key, value = self.clone(context, 2) | |
| mixed_query_layer = self.query(hidden_states) | |
| # mixed_key_layer = self.key(context) | |
| # mixed_value_layer = self.value(context) | |
| mixed_key_layer = self.key(key) | |
| mixed_value_layer = self.value(value) | |
| query_layer = self.transpose_for_scores(mixed_query_layer) | |
| key_layer = self.transpose_for_scores(mixed_key_layer) | |
| value_layer = self.transpose_for_scores(mixed_value_layer) | |
| # Take the dot product between "query" and "key" to get the raw attention scores. | |
| attention_scores = self.matmul1([query_layer, key_layer.transpose(-1, -2)]) | |
| attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
| # Apply the attention mask is (precomputed for all layers in BertModel forward() function) | |
| if attention_mask is not None: | |
| attention_scores = self.add([attention_scores, attention_mask]) | |
| # Normalize the attention scores to probabilities. | |
| attention_probs = self.softmax(attention_scores) | |
| self.save_attn(attention_probs) | |
| attention_probs.register_hook(self.save_attn_gradients) | |
| # This is actually dropping out entire tokens to attend to, which might | |
| # seem a bit unusual, but is taken from the original Transformer paper. | |
| attention_probs = self.dropout(attention_probs) | |
| context_layer = self.matmul2([attention_probs, value_layer]) | |
| context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
| new_context_layer_shape = context_layer.size()[:-2] + (self.head_size,) | |
| context_layer = context_layer.view(*new_context_layer_shape) | |
| outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) | |
| return outputs | |
| def relprop(self, cam, **kwargs): | |
| # Assume output_attentions == False | |
| cam = self.transpose_for_scores(cam) | |
| # [attention_probs, value_layer] | |
| (cam1, cam2) = self.matmul2.relprop(cam, **kwargs) | |
| cam1 /= 2 | |
| cam2 /= 2 | |
| self.save_attn_cam(cam1) | |
| cam1 = self.dropout.relprop(cam1, **kwargs) | |
| cam1 = self.softmax.relprop(cam1, **kwargs) | |
| if self.attention_mask is not None: | |
| # [attention_scores, attention_mask] | |
| (cam1, _) = self.add.relprop(cam1, **kwargs) | |
| # [query_layer, key_layer.transpose(-1, -2)] | |
| (cam1_1, cam1_2) = self.matmul1.relprop(cam1, **kwargs) | |
| cam1_1 /= 2 | |
| cam1_2 /= 2 | |
| # query | |
| cam1_1 = self.transpose_for_scores_relprop(cam1_1) | |
| cam1_1 = self.query.relprop(cam1_1, **kwargs) | |
| # key | |
| cam1_2 = self.transpose_for_scores_relprop(cam1_2.transpose(-1, -2)) | |
| cam1_2 = self.key.relprop(cam1_2, **kwargs) | |
| # value | |
| cam2 = self.transpose_for_scores_relprop(cam2) | |
| cam2 = self.value.relprop(cam2, **kwargs) | |
| cam = self.clone.relprop((cam1_2, cam2), **kwargs) | |
| # returning two cams- one for the hidden state and one for the context | |
| return (cam1_1, cam) | |
| class LxmertAttentionOutput(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.dense = Linear(config.hidden_size, config.hidden_size) | |
| self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12) | |
| self.dropout = Dropout(config.hidden_dropout_prob) | |
| self.add = Add() | |
| def forward(self, hidden_states, input_tensor): | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| add = self.add([hidden_states, input_tensor]) | |
| hidden_states = self.LayerNorm(add) | |
| return hidden_states | |
| def relprop(self, cam, **kwargs): | |
| cam = self.LayerNorm.relprop(cam, **kwargs) | |
| # [hidden_states, input_tensor] | |
| (cam1, cam2) = self.add.relprop(cam, **kwargs) | |
| cam1 = self.dropout.relprop(cam1, **kwargs) | |
| cam1 = self.dense.relprop(cam1, **kwargs) | |
| return (cam1, cam2) | |
| class LxmertCrossAttentionLayer(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.att = LxmertAttention(config) | |
| self.output = LxmertAttentionOutput(config) | |
| self.clone = Clone() | |
| def forward(self, input_tensor, ctx_tensor, ctx_att_mask=None, output_attentions=False): | |
| inp1, inp2 = self.clone(input_tensor, 2) | |
| output = self.att(inp1, ctx_tensor, ctx_att_mask, output_attentions=output_attentions) | |
| if output_attentions: | |
| attention_probs = output[1] | |
| attention_output = self.output(output[0], inp2) | |
| outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) | |
| return outputs | |
| def relprop(self, cam, **kwargs): | |
| cam_output, cam_inp2 = self.output.relprop(cam, **kwargs) | |
| cam_inp1, cam_ctx = self.att.relprop(cam_output, **kwargs) | |
| cam_inp = self.clone.relprop((cam_inp1, cam_inp2), **kwargs) | |
| return (cam_inp, cam_ctx) | |
| class LxmertSelfAttentionLayer(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.self = LxmertAttention(config) | |
| self.output = LxmertAttentionOutput(config) | |
| self.clone = Clone() | |
| def forward(self, input_tensor, attention_mask, output_attentions=False): | |
| inp1, inp2, inp3 = self.clone(input_tensor, 3) | |
| # Self attention attends to itself, thus keys and queries are the same (input_tensor). | |
| output = self.self( | |
| inp1, | |
| inp2, | |
| attention_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| if output_attentions: | |
| attention_probs = output[1] | |
| attention_output = self.output(output[0], inp3) | |
| outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) | |
| return outputs | |
| def relprop(self, cam, **kwargs): | |
| cam_output, cam_inp3 = self.output.relprop(cam, **kwargs) | |
| cam_inp1, cam_inp2 = self.self.relprop(cam_output, **kwargs) | |
| cam_inp = self.clone.relprop((cam_inp1, cam_inp2, cam_inp3), **kwargs) | |
| return cam_inp | |
| class LxmertIntermediate(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.dense = Linear(config.hidden_size, config.intermediate_size) | |
| self.intermediate_act_fn = ACT2FN[config.hidden_act]() | |
| def forward(self, hidden_states): | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.intermediate_act_fn(hidden_states) | |
| return hidden_states | |
| def relprop(self, cam, **kwargs): | |
| cam = self.intermediate_act_fn.relprop(cam, **kwargs) | |
| cam = self.dense.relprop(cam, **kwargs) | |
| return cam | |
| class LxmertOutput(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.dense = Linear(config.intermediate_size, config.hidden_size) | |
| self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12) | |
| self.dropout = Dropout(config.hidden_dropout_prob) | |
| self.add = Add() | |
| def forward(self, hidden_states, input_tensor): | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| add = self.add([hidden_states, input_tensor]) | |
| hidden_states = self.LayerNorm(add) | |
| return hidden_states | |
| def relprop(self, cam, **kwargs): | |
| cam = self.LayerNorm.relprop(cam, **kwargs) | |
| # [hidden_states, input_tensor] | |
| (cam1, cam2)= self.add.relprop(cam, **kwargs) | |
| cam1 = self.dropout.relprop(cam1, **kwargs) | |
| cam1 = self.dense.relprop(cam1, **kwargs) | |
| return (cam1, cam2) | |
| class LxmertLayer(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.attention = LxmertSelfAttentionLayer(config) | |
| self.intermediate = LxmertIntermediate(config) | |
| self.output = LxmertOutput(config) | |
| self.clone = Clone() | |
| def forward(self, hidden_states, attention_mask=None, output_attentions=False): | |
| outputs = self.attention(hidden_states, attention_mask, output_attentions=output_attentions) | |
| attention_output = outputs[0] | |
| ao1, ao2 = self.clone(attention_output, 2) | |
| intermediate_output = self.intermediate(ao1) | |
| layer_output = self.output(intermediate_output, ao2) | |
| outputs = (layer_output,) + outputs[1:] # add attentions if we output them | |
| return outputs | |
| def relprop(self, cam, **kwargs): | |
| (cam1, cam2) = self.output.relprop(cam, **kwargs) | |
| cam1 = self.intermediate.relprop(cam1, **kwargs) | |
| cam = self.clone.relprop((cam1, cam2), **kwargs) | |
| cam = self.attention.relprop(cam, **kwargs) | |
| return cam | |
| class LxmertXLayer(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| # The cross-attention Layer | |
| self.visual_attention = LxmertCrossAttentionLayer(config) | |
| # Self-attention Layers | |
| self.lang_self_att = LxmertSelfAttentionLayer(config) | |
| self.visn_self_att = LxmertSelfAttentionLayer(config) | |
| # Intermediate and Output Layers (FFNs) | |
| self.lang_inter = LxmertIntermediate(config) | |
| self.lang_output = LxmertOutput(config) | |
| self.visn_inter = LxmertIntermediate(config) | |
| self.visn_output = LxmertOutput(config) | |
| self.clone1 = Clone() | |
| self.clone2 = Clone() | |
| self.clone3 = Clone() | |
| self.clone4 = Clone() | |
| def cross_att( | |
| self, | |
| lang_input, | |
| lang_attention_mask, | |
| visual_input, | |
| visual_attention_mask, | |
| output_x_attentions=False, | |
| ): | |
| lang_input1, lang_input2 = self.clone1(lang_input, 2) | |
| visual_input1, visual_input2 = self.clone2(visual_input, 2) | |
| if not hasattr(self, 'visual_attention_copy'): | |
| self.visual_attention_copy = copy.deepcopy(self.visual_attention) | |
| # Cross Attention | |
| lang_att_output = self.visual_attention( | |
| lang_input1, | |
| visual_input1, | |
| ctx_att_mask=visual_attention_mask, | |
| output_attentions=output_x_attentions, | |
| ) | |
| visual_att_output = self.visual_attention_copy( | |
| visual_input2, | |
| lang_input2, | |
| ctx_att_mask=lang_attention_mask, | |
| output_attentions=False, | |
| ) | |
| return lang_att_output, visual_att_output | |
| def relprop_cross(self, cam, **kwargs): | |
| cam_lang, cam_vis = cam | |
| cam_vis2, cam_lang2 = self.visual_attention_copy.relprop(cam_vis, **kwargs) | |
| cam_lang1, cam_vis1 = self.visual_attention.relprop(cam_lang, **kwargs) | |
| cam_vis = self.clone2.relprop((cam_vis1, cam_vis2), **kwargs) | |
| cam_lang = self.clone1.relprop((cam_lang1, cam_lang2), **kwargs) | |
| return cam_lang, cam_vis | |
| def self_att(self, lang_input, lang_attention_mask, visual_input, visual_attention_mask): | |
| # Self Attention | |
| lang_att_output = self.lang_self_att(lang_input, lang_attention_mask, output_attentions=False) | |
| visual_att_output = self.visn_self_att(visual_input, visual_attention_mask, output_attentions=False) | |
| return lang_att_output[0], visual_att_output[0] | |
| def relprop_self(self, cam, **kwargs): | |
| cam_lang, cam_vis = cam | |
| cam_vis = self.visn_self_att.relprop(cam_vis, **kwargs) | |
| cam_lang = self.lang_self_att.relprop(cam_lang, **kwargs) | |
| return cam_lang, cam_vis | |
| def output_fc(self, lang_input, visual_input): | |
| lang_input1, lang_input2 = self.clone3(lang_input, 2) | |
| visual_input1, visual_input2 = self.clone4(visual_input, 2) | |
| # FC layers | |
| lang_inter_output = self.lang_inter(lang_input1) | |
| visual_inter_output = self.visn_inter(visual_input1) | |
| # Layer output | |
| lang_output = self.lang_output(lang_inter_output, lang_input2) | |
| visual_output = self.visn_output(visual_inter_output, visual_input2) | |
| return lang_output, visual_output | |
| def relprop_output(self, cam, **kwargs): | |
| cam_lang, cam_vis = cam | |
| cam_vis_inter, cam_vis2 = self.visn_output.relprop(cam_vis, **kwargs) | |
| cam_lang_inter, cam_lang2 = self.lang_output.relprop(cam_lang, **kwargs) | |
| cam_vis1 = self.visn_inter.relprop(cam_vis_inter, **kwargs) | |
| cam_lang1 = self.lang_inter.relprop(cam_lang_inter, **kwargs) | |
| cam_vis = self.clone4.relprop((cam_vis1, cam_vis2), **kwargs) | |
| cam_lang = self.clone3.relprop((cam_lang1, cam_lang2), **kwargs) | |
| return cam_lang, cam_vis | |
| def forward( | |
| self, | |
| lang_feats, | |
| lang_attention_mask, | |
| visual_feats, | |
| visual_attention_mask, | |
| output_attentions=False, | |
| ): | |
| lang_att_output, visual_att_output = self.cross_att( | |
| lang_input=lang_feats, | |
| lang_attention_mask=lang_attention_mask, | |
| visual_input=visual_feats, | |
| visual_attention_mask=visual_attention_mask, | |
| output_x_attentions=output_attentions, | |
| ) | |
| attention_probs = lang_att_output[1:] | |
| lang_att_output, visual_att_output = self.self_att( | |
| lang_att_output[0], | |
| lang_attention_mask, | |
| visual_att_output[0], | |
| visual_attention_mask, | |
| ) | |
| lang_output, visual_output = self.output_fc(lang_att_output, visual_att_output) | |
| return ( | |
| ( | |
| lang_output, | |
| visual_output, | |
| attention_probs[0], | |
| ) | |
| if output_attentions | |
| else (lang_output, visual_output) | |
| ) | |
| def relprop(self, cam, **kwargs): | |
| cam_lang, cam_vis = cam | |
| cam_lang, cam_vis = self.relprop_output((cam_lang, cam_vis), **kwargs) | |
| cam_lang, cam_vis = self.relprop_self((cam_lang, cam_vis), **kwargs) | |
| cam_lang, cam_vis = self.relprop_cross((cam_lang, cam_vis), **kwargs) | |
| return cam_lang, cam_vis | |
| class LxmertVisualFeatureEncoder(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| feat_dim = config.visual_feat_dim | |
| pos_dim = config.visual_pos_dim | |
| # Object feature encoding | |
| self.visn_fc = Linear(feat_dim, config.hidden_size) | |
| self.visn_layer_norm = LayerNorm(config.hidden_size, eps=1e-12) | |
| # Box position encoding | |
| self.box_fc = Linear(pos_dim, config.hidden_size) | |
| self.box_layer_norm = LayerNorm(config.hidden_size, eps=1e-12) | |
| self.dropout = Dropout(config.hidden_dropout_prob) | |
| def forward(self, visual_feats, visual_pos): | |
| x = self.visn_fc(visual_feats) | |
| x = self.visn_layer_norm(x) | |
| y = self.box_fc(visual_pos) | |
| y = self.box_layer_norm(y) | |
| output = (x + y) / 2 | |
| output = self.dropout(output) | |
| return output | |
| def relprop(self, cam, **kwargs): | |
| cam = self.dropout.relprop(cam, **kwargs) | |
| cam = self.visn_layer_norm.relprop(cam, **kwargs) | |
| cam = self.visn_fc.relprop(cam, **kwargs) | |
| return cam | |
| class LxmertEncoder(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| # Obj-level image embedding layer | |
| self.visn_fc = LxmertVisualFeatureEncoder(config) | |
| self.config = config | |
| # Number of layers | |
| self.num_l_layers = config.l_layers | |
| self.num_x_layers = config.x_layers | |
| self.num_r_layers = config.r_layers | |
| # Layers | |
| # Using self.layer instead of self.l_layer to support loading BERT weights. | |
| self.layer = nn.ModuleList([LxmertLayer(config) for _ in range(self.num_l_layers)]) | |
| self.x_layers = nn.ModuleList([LxmertXLayer(config) for _ in range(self.num_x_layers)]) | |
| self.r_layers = nn.ModuleList([LxmertLayer(config) for _ in range(self.num_r_layers)]) | |
| def forward( | |
| self, | |
| lang_feats, | |
| lang_attention_mask, | |
| visual_feats, | |
| visual_pos, | |
| visual_attention_mask=None, | |
| output_attentions=None, | |
| ): | |
| vision_hidden_states = () | |
| language_hidden_states = () | |
| vision_attentions = () if output_attentions or self.config.output_attentions else None | |
| language_attentions = () if output_attentions or self.config.output_attentions else None | |
| cross_encoder_attentions = () if output_attentions or self.config.output_attentions else None | |
| visual_feats = self.visn_fc(visual_feats, visual_pos) | |
| # Run language layers | |
| for layer_module in self.layer: | |
| l_outputs = layer_module(lang_feats, lang_attention_mask, output_attentions=output_attentions) | |
| lang_feats = l_outputs[0] | |
| language_hidden_states = language_hidden_states + (lang_feats,) | |
| if language_attentions is not None: | |
| language_attentions = language_attentions + (l_outputs[1],) | |
| # Run relational layers | |
| for layer_module in self.r_layers: | |
| v_outputs = layer_module(visual_feats, visual_attention_mask, output_attentions=output_attentions) | |
| visual_feats = v_outputs[0] | |
| vision_hidden_states = vision_hidden_states + (visual_feats,) | |
| if vision_attentions is not None: | |
| vision_attentions = vision_attentions + (v_outputs[1],) | |
| # Run cross-modality layers | |
| for layer_module in self.x_layers: | |
| x_outputs = layer_module( | |
| lang_feats, | |
| lang_attention_mask, | |
| visual_feats, | |
| visual_attention_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| lang_feats, visual_feats = x_outputs[:2] | |
| vision_hidden_states = vision_hidden_states + (visual_feats,) | |
| language_hidden_states = language_hidden_states + (lang_feats,) | |
| if cross_encoder_attentions is not None: | |
| cross_encoder_attentions = cross_encoder_attentions + (x_outputs[2],) | |
| visual_encoder_outputs = ( | |
| vision_hidden_states, | |
| vision_attentions if output_attentions else None, | |
| ) | |
| lang_encoder_outputs = ( | |
| language_hidden_states, | |
| language_attentions if output_attentions else None, | |
| ) | |
| return ( | |
| visual_encoder_outputs, | |
| lang_encoder_outputs, | |
| cross_encoder_attentions if output_attentions else None, | |
| ) | |
| def relprop(self, cam, **kwargs): | |
| cam_lang, cam_vis = cam | |
| for layer_module in reversed(self.x_layers): | |
| cam_lang, cam_vis = layer_module.relprop((cam_lang, cam_vis), **kwargs) | |
| for layer_module in reversed(self.r_layers): | |
| cam_vis = layer_module.relprop(cam_vis, **kwargs) | |
| for layer_module in reversed(self.layer): | |
| cam_lang = layer_module.relprop(cam_lang, **kwargs) | |
| return cam_lang, cam_vis | |
| class LxmertPooler(nn.Module): | |
| def __init__(self, config): | |
| super(LxmertPooler, self).__init__() | |
| self.dense = Linear(config.hidden_size, config.hidden_size) | |
| self.activation = Tanh() | |
| self.pool = IndexSelect() | |
| def forward(self, hidden_states): | |
| # We "pool" the model by simply taking the hidden state corresponding | |
| # to the first token. | |
| # first_token_tensor = hidden_states[:, 0] | |
| first_token_tensor = self.pool(hidden_states, 1, torch.tensor(0, device=hidden_states.device)) | |
| first_token_tensor = first_token_tensor.squeeze(1) | |
| pooled_output = self.dense(first_token_tensor) | |
| pooled_output = self.activation(pooled_output) | |
| return pooled_output | |
| def relprop(self, cam, **kwargs): | |
| cam = self.activation.relprop(cam, **kwargs) | |
| cam = self.dense.relprop(cam, **kwargs) | |
| cam = cam.unsqueeze(1) | |
| cam = self.pool.relprop(cam, **kwargs) | |
| return cam | |
| class LxmertPredictionHeadTransform(nn.Module): | |
| def __init__(self, config): | |
| super(LxmertPredictionHeadTransform, self).__init__() | |
| self.dense = Linear(config.hidden_size, config.hidden_size) | |
| self.transform_act_fn = ACT2FN[config.hidden_act] | |
| self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12) | |
| def forward(self, hidden_states): | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.transform_act_fn(hidden_states) | |
| hidden_states = self.LayerNorm(hidden_states) | |
| return hidden_states | |
| def relprop(self, cam, **kwargs): | |
| cam = self.LayerNorm.relprop(cam, **kwargs) | |
| cam = self.transform_act_fn.relprop(cam, **kwargs) | |
| cam = self.dense.relprop(cam, **kwargs) | |
| return cam | |
| class LxmertLMPredictionHead(nn.Module): | |
| def __init__(self, config, lxmert_model_embedding_weights): | |
| super(LxmertLMPredictionHead, self).__init__() | |
| self.transform = LxmertPredictionHeadTransform(config) | |
| # The output weights are the same as the input embeddings, but there is | |
| # an output-only bias for each token. | |
| self.decoder = Linear( | |
| lxmert_model_embedding_weights.size(1), | |
| lxmert_model_embedding_weights.size(0), | |
| bias=False, | |
| ) | |
| self.decoder.weight = lxmert_model_embedding_weights | |
| self.bias = nn.Parameter(torch.zeros(lxmert_model_embedding_weights.size(0))) | |
| def forward(self, hidden_states): | |
| hidden_states = self.transform(hidden_states) | |
| hidden_states = self.decoder(hidden_states) + self.bias | |
| return hidden_states | |
| def relprop(self, cam, **kwargs): | |
| cam = self.decoder.relprop(cam, **kwargs) | |
| cam = self.transform.relprop(cam, **kwargs) | |
| return cam | |
| class LxmertVisualAnswerHead(nn.Module): | |
| def __init__(self, config, num_labels): | |
| super().__init__() | |
| hid_dim = config.hidden_size | |
| self.logit_fc = nn.Sequential( | |
| Linear(hid_dim, hid_dim * 2), | |
| GELU(), | |
| LayerNorm(hid_dim * 2, eps=1e-12), | |
| Linear(hid_dim * 2, num_labels), | |
| ) | |
| def forward(self, hidden_states): | |
| return self.logit_fc(hidden_states) | |
| def relprop(self, cam, **kwargs): | |
| for m in reversed(self.logit_fc._modules.values()): | |
| cam = m.relprop(cam, **kwargs) | |
| return cam | |
| class LxmertVisualObjHead(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.transform = LxmertPredictionHeadTransform(config) | |
| # Decide the use of visual losses | |
| visual_losses = {} | |
| if config.visual_obj_loss: | |
| visual_losses["obj"] = {"shape": (-1,), "num": config.num_object_labels} | |
| if config.visual_attr_loss: | |
| visual_losses["attr"] = {"shape": (-1,), "num": config.num_attr_labels} | |
| if config.visual_obj_loss: | |
| visual_losses["feat"] = { | |
| "shape": (-1, config.visual_feat_dim), | |
| "num": config.visual_feat_dim, | |
| } | |
| self.visual_losses = visual_losses | |
| # The output weights are the same as the input embeddings, but there is | |
| # an output-only bias for each token. | |
| self.decoder_dict = nn.ModuleDict( | |
| {key: nn.Linear(config.hidden_size, self.visual_losses[key]["num"]) for key in self.visual_losses} | |
| ) | |
| def forward(self, hidden_states): | |
| hidden_states = self.transform(hidden_states) | |
| output = {} | |
| for key in self.visual_losses: | |
| output[key] = self.decoder_dict[key](hidden_states) | |
| return output | |
| def relprop(self, cam, **kwargs): | |
| return self.transform.relprop(cam, **kwargs) | |
| class LxmertPreTrainingHeads(nn.Module): | |
| def __init__(self, config, lxmert_model_embedding_weights): | |
| super(LxmertPreTrainingHeads, self).__init__() | |
| self.predictions = LxmertLMPredictionHead(config, lxmert_model_embedding_weights) | |
| self.seq_relationship = Linear(config.hidden_size, 2) | |
| def forward(self, sequence_output, pooled_output): | |
| prediction_scores = self.predictions(sequence_output) | |
| seq_relationship_score = self.seq_relationship(pooled_output) | |
| return prediction_scores, seq_relationship_score | |
| def relprop(self, cam, **kwargs): | |
| cam_seq, cam_pooled = cam | |
| cam_pooled = self.seq_relationship.relprop(cam_pooled, **kwargs) | |
| cam_seq = self.predictions.relprop(cam_seq, **kwargs) | |
| return cam_seq, cam_pooled | |
| class LxmertPreTrainedModel(PreTrainedModel): | |
| """ | |
| An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
| models. | |
| """ | |
| config_class = LxmertConfig | |
| load_tf_weights = load_tf_weights_in_lxmert | |
| base_model_prefix = "lxmert" | |
| def _init_weights(self, module): | |
| """ Initialize the weights """ | |
| if isinstance(module, (nn.Linear, nn.Embedding)): | |
| # Slightly different from the TF version which uses truncated_normal for initialization | |
| # cf https://github.com/pytorch/pytorch/pull/5617 | |
| module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
| elif isinstance(module, nn.LayerNorm): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| if isinstance(module, nn.Linear) and module.bias is not None: | |
| module.bias.data.zero_() | |
| LXMERT_START_DOCSTRING = r""" | |
| The lxmert model was proposed in `lxmert: Learning Cross-Modality Encoder Representations from Transformers | |
| <https://arxiv.org/abs/1908.07490>`__ by Hao Tan and Mohit Bansal. It's a vision and language transformer model, | |
| pretrained on a variety of multi-modal datasets comprising of GQA, VQAv2.0, MCSCOCO captions, and Visual genome, | |
| using a combination of masked language modeling, region of interest feature regression, cross entropy loss for | |
| question answering attribute prediction, and object tag prediction. | |
| This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic | |
| methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, | |
| pruning heads etc.) | |
| This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ | |
| subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to | |
| general usage and behavior. | |
| Parameters: | |
| config (:class:`~transformers.LxmertConfig`): Model configuration class with all the parameters of the model. | |
| Initializing with a config file does not load the weights associated with the model, only the | |
| configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model | |
| weights. | |
| """ | |
| LXMERT_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`): | |
| Indices of input sequence tokens in the vocabulary. | |
| Indices can be obtained using :class:`~transformers.LxmertTokenizer`. See | |
| :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for | |
| details. | |
| `What are input IDs? <../glossary.html#input-ids>`__ | |
| visual_feats: (:obj:`torch.FloatTensor` of shape :obj:՝(batch_size, num_visual_features, visual_feat_dim)՝): | |
| This input represents visual features. They ROI pooled object features from bounding boxes using a | |
| faster-RCNN model) | |
| These are currently not provided by the transformers library. | |
| visual_pos: (:obj:`torch.FloatTensor` of shape :obj:՝(batch_size, num_visual_features, visual_pos_dim)՝): | |
| This input represents spacial features corresponding to their relative (via index) visual features. The | |
| pre-trained lxmert model expects these spacial features to be normalized bounding boxes on a scale of 0 to | |
| 1. | |
| These are currently not provided by the transformers library. | |
| attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| `What are attention masks? <../glossary.html#attention-mask>`__ | |
| visual_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| `What are attention masks? <../glossary.html#attention-mask>`__ | |
| token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): | |
| Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, | |
| 1]``: | |
| - 0 corresponds to a `sentence A` token, | |
| - 1 corresponds to a `sentence B` token. | |
| `What are token type IDs? <../glossary.html#token-type-ids>`__ | |
| inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`): | |
| Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. | |
| This is useful if you want more control over how to convert :obj:`input_ids` indices into associated | |
| vectors than the model's internal embedding lookup matrix. | |
| output_attentions (:obj:`bool`, `optional`): | |
| Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned | |
| tensors for more detail. | |
| output_hidden_states (:obj:`bool`, `optional`): | |
| Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for | |
| more detail. | |
| return_dict (:obj:`bool`, `optional`): | |
| Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. | |
| """ | |
| class LxmertModel(LxmertPreTrainedModel): | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.embeddings = LxmertEmbeddings(config) | |
| self.encoder = LxmertEncoder(config) | |
| self.pooler = LxmertPooler(config) | |
| self.init_weights() | |
| def get_input_embeddings(self): | |
| return self.embeddings.word_embeddings | |
| def set_input_embeddings(self, new_embeddings): | |
| self.embeddings.word_embeddings = new_embeddings | |
| def forward( | |
| self, | |
| input_ids=None, | |
| visual_feats=None, | |
| visual_pos=None, | |
| attention_mask=None, | |
| visual_attention_mask=None, | |
| token_type_ids=None, | |
| inputs_embeds=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if input_ids is not None and inputs_embeds is not None: | |
| raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
| elif input_ids is not None: | |
| input_shape = input_ids.size() | |
| elif inputs_embeds is not None: | |
| input_shape = inputs_embeds.size()[:-1] | |
| else: | |
| raise ValueError("You have to specify either input_ids or inputs_embeds") | |
| assert visual_feats is not None, "`visual_feats` cannot be `None`" | |
| assert visual_pos is not None, "`visual_pos` cannot be `None`" | |
| device = input_ids.device if input_ids is not None else inputs_embeds.device | |
| if attention_mask is None: | |
| attention_mask = torch.ones(input_shape, device=device) | |
| if token_type_ids is None: | |
| token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) | |
| # We create a 3D attention mask from a 2D tensor mask. | |
| # Sizes are [batch_size, 1, 1, to_seq_length] | |
| # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] | |
| # this attention mask is more simple than the triangular masking of causal attention | |
| # used in OpenAI GPT, we just need to prepare the broadcast dimension here. | |
| extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) | |
| # Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
| # masked positions, this operation will create a tensor which is 0.0 for | |
| # positions we want to attend and -10000.0 for masked positions. | |
| # Since we are adding it to the raw scores before the softmax, this is | |
| # effectively the same as removing these entirely. | |
| extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) | |
| extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | |
| # Process the visual attention mask | |
| if visual_attention_mask is not None: | |
| extended_visual_attention_mask = visual_attention_mask.unsqueeze(1).unsqueeze(2) | |
| extended_visual_attention_mask = extended_visual_attention_mask.to(dtype=self.dtype) | |
| extended_visual_attention_mask = (1.0 - extended_visual_attention_mask) * -10000.0 | |
| else: | |
| extended_visual_attention_mask = None | |
| # Positional Word Embeddings | |
| embedding_output = self.embeddings(input_ids, token_type_ids, inputs_embeds) | |
| # Run Lxmert encoder | |
| encoder_outputs = self.encoder( | |
| embedding_output, | |
| extended_attention_mask, | |
| visual_feats=visual_feats, | |
| visual_pos=visual_pos, | |
| visual_attention_mask=extended_visual_attention_mask, | |
| output_attentions=output_attentions, | |
| ) | |
| visual_encoder_outputs, lang_encoder_outputs = encoder_outputs[:2] | |
| vision_hidden_states = visual_encoder_outputs[0] | |
| language_hidden_states = lang_encoder_outputs[0] | |
| all_attentions = () | |
| if output_attentions: | |
| language_attentions = lang_encoder_outputs[1] | |
| vision_attentions = visual_encoder_outputs[1] | |
| cross_encoder_attentions = encoder_outputs[2] | |
| all_attentions = ( | |
| language_attentions, | |
| vision_attentions, | |
| cross_encoder_attentions, | |
| ) | |
| hidden_states = (language_hidden_states, vision_hidden_states) if output_hidden_states else () | |
| visual_output = vision_hidden_states[-1] | |
| lang_output = language_hidden_states[-1] | |
| pooled_output = self.pooler(lang_output) | |
| if not return_dict: | |
| return (lang_output, visual_output, pooled_output) + hidden_states + all_attentions | |
| return LxmertModelOutput( | |
| pooled_output=pooled_output, | |
| language_output=lang_output, | |
| vision_output=visual_output, | |
| language_hidden_states=language_hidden_states if output_hidden_states else None, | |
| vision_hidden_states=vision_hidden_states if output_hidden_states else None, | |
| language_attentions=language_attentions if output_attentions else None, | |
| vision_attentions=vision_attentions if output_attentions else None, | |
| cross_encoder_attentions=cross_encoder_attentions if output_attentions else None, | |
| ) | |
| def relprop(self, cam, **kwargs): | |
| cam_lang, cam_vis = cam | |
| cam_lang = self.pooler.relprop(cam_lang, **kwargs) | |
| cam_lang, cam_vis = self.encoder.relprop((cam_lang, cam_vis), **kwargs) | |
| return cam_lang, cam_vis | |
| class LxmertForPreTraining(LxmertPreTrainedModel): | |
| def __init__(self, config): | |
| super().__init__(config) | |
| # Configuration | |
| self.config = config | |
| self.num_qa_labels = config.num_qa_labels | |
| self.visual_loss_normalizer = config.visual_loss_normalizer | |
| # Use of pretraining tasks | |
| self.task_mask_lm = config.task_mask_lm | |
| self.task_obj_predict = config.task_obj_predict | |
| self.task_matched = config.task_matched | |
| self.task_qa = config.task_qa | |
| # Lxmert backbone | |
| self.lxmert = LxmertModel(config) | |
| # Pre-training heads | |
| self.cls = LxmertPreTrainingHeads(config, self.lxmert.embeddings.word_embeddings.weight) | |
| if self.task_obj_predict: | |
| self.obj_predict_head = LxmertVisualObjHead(config) | |
| if self.task_qa: | |
| self.answer_head = LxmertVisualAnswerHead(config, self.num_qa_labels) | |
| # Weight initialization | |
| self.init_weights() | |
| # Loss functions | |
| self.loss_fcts = { | |
| "l2": SmoothL1Loss(reduction="none"), | |
| "visual_ce": CrossEntropyLoss(reduction="none"), | |
| "ce": CrossEntropyLoss(), | |
| } | |
| visual_losses = {} | |
| if config.visual_obj_loss: | |
| visual_losses["obj"] = { | |
| "shape": (-1,), | |
| "num": config.num_object_labels, | |
| "loss": "visual_ce", | |
| } | |
| if config.visual_attr_loss: | |
| visual_losses["attr"] = { | |
| "shape": (-1,), | |
| "num": config.num_attr_labels, | |
| "loss": "visual_ce", | |
| } | |
| if config.visual_obj_loss: | |
| visual_losses["feat"] = { | |
| "shape": (-1, config.visual_feat_dim), | |
| "num": config.visual_feat_dim, | |
| "loss": "l2", | |
| } | |
| self.visual_losses = visual_losses | |
| def resize_num_qa_labels(self, num_labels): | |
| """ | |
| Build a resized question answering linear layer Module from a provided new linear layer. Increasing the size | |
| will add newly initialized weights. Reducing the size will remove weights from the end | |
| Args: | |
| num_labels (:obj:`int`, `optional`): | |
| New number of labels in the linear layer weight matrix. Increasing the size will add newly initialized | |
| weights at the end. Reducing the size will remove weights from the end. If not provided or :obj:`None`, | |
| just returns a pointer to the qa labels :obj:`torch.nn.Linear`` module of the model without doing | |
| anything. | |
| Return: | |
| :obj:`torch.nn.Linear`: Pointer to the resized Linear layer or the old Linear layer | |
| """ | |
| cur_qa_logit_layer = self.get_qa_logit_layer() | |
| if num_labels is None or cur_qa_logit_layer is None: | |
| return | |
| new_qa_logit_layer = self._resize_qa_labels(num_labels) | |
| self.config.num_qa_labels = num_labels | |
| self.num_qa_labels = num_labels | |
| return new_qa_logit_layer | |
| def _resize_qa_labels(self, num_labels): | |
| cur_qa_logit_layer = self.get_qa_logit_layer() | |
| new_qa_logit_layer = self._get_resized_qa_labels(cur_qa_logit_layer, num_labels) | |
| self._set_qa_logit_layer(new_qa_logit_layer) | |
| return self.get_qa_logit_layer() | |
| def get_qa_logit_layer(self) -> nn.Module: | |
| """ | |
| Returns the the linear layer that produces question answering logits. | |
| Returns: | |
| :obj:`nn.Module`: A torch module mapping the question answering prediction hidden states or :obj:`None` if | |
| lxmert does not have a visual answering head. | |
| """ | |
| if hasattr(self, "answer_head"): | |
| return self.answer_head.logit_fc[-1] | |
| def _set_qa_logit_layer(self, qa_logit_layer): | |
| self.answer_head.logit_fc[-1] = qa_logit_layer | |
| def _get_resized_qa_labels(self, cur_qa_logit_layer, num_labels): | |
| if num_labels is None: | |
| return cur_qa_logit_layer | |
| cur_qa_labels, hidden_dim = cur_qa_logit_layer.weight.size() | |
| if cur_qa_labels == num_labels: | |
| return cur_qa_logit_layer | |
| # Build new linear output | |
| if getattr(cur_qa_logit_layer, "bias", None) is not None: | |
| new_qa_logit_layer = nn.Linear(hidden_dim, num_labels) | |
| else: | |
| new_qa_logit_layer = nn.Linear(hidden_dim, num_labels, bias=False) | |
| new_qa_logit_layer.to(cur_qa_logit_layer.weight.device) | |
| # initialize all new labels | |
| self._init_weights(new_qa_logit_layer) | |
| # Copy labels from the previous weights | |
| num_labels_to_copy = min(cur_qa_labels, num_labels) | |
| new_qa_logit_layer.weight.data[:num_labels_to_copy, :] = cur_qa_logit_layer.weight.data[:num_labels_to_copy, :] | |
| if getattr(cur_qa_logit_layer, "bias", None) is not None: | |
| new_qa_logit_layer.bias.data[:num_labels_to_copy] = cur_qa_logit_layer.bias.data[:num_labels_to_copy] | |
| return new_qa_logit_layer | |
| def forward( | |
| self, | |
| input_ids=None, | |
| visual_feats=None, | |
| visual_pos=None, | |
| attention_mask=None, | |
| visual_attention_mask=None, | |
| token_type_ids=None, | |
| inputs_embeds=None, | |
| labels=None, | |
| obj_labels=None, | |
| matched_label=None, | |
| ans=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| **kwargs, | |
| ): | |
| r""" | |
| labels (``torch.LongTensor`` of shape ``(batch_size, sequence_length)``, `optional`): | |
| Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ..., | |
| config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored | |
| (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]`` | |
| obj_labels: (``Dict[Str: Tuple[Torch.FloatTensor, Torch.FloatTensor]]``, `optional`): | |
| each key is named after each one of the visual losses and each element of the tuple is of the shape | |
| ``(batch_size, num_features)`` and ``(batch_size, num_features, visual_feature_dim)`` for each the label id | |
| and the label score respectively | |
| matched_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`): | |
| Labels for computing the whether or not the text input matches the image (classification) loss. Input | |
| should be a sequence pair (see :obj:`input_ids` docstring) Indices should be in ``[0, 1]``: | |
| - 0 indicates that the sentence does not match the image, | |
| - 1 indicates that the sentence does match the image. | |
| ans: (``Torch.Tensor`` of shape ``(batch_size)``, `optional`): | |
| a one hot representation hof the correct answer `optional` | |
| Returns: | |
| """ | |
| if "masked_lm_labels" in kwargs: | |
| warnings.warn( | |
| "The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.", | |
| FutureWarning, | |
| ) | |
| labels = kwargs.pop("masked_lm_labels") | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| device = input_ids.device if input_ids is not None else inputs_embeds.device | |
| lxmert_output = self.lxmert( | |
| input_ids=input_ids, | |
| visual_feats=visual_feats, | |
| visual_pos=visual_pos, | |
| token_type_ids=token_type_ids, | |
| attention_mask=attention_mask, | |
| visual_attention_mask=visual_attention_mask, | |
| inputs_embeds=inputs_embeds, | |
| output_hidden_states=output_hidden_states, | |
| output_attentions=output_attentions, | |
| return_dict=return_dict, | |
| ) | |
| lang_output, visual_output, pooled_output = ( | |
| lxmert_output[0], | |
| lxmert_output[1], | |
| lxmert_output[2], | |
| ) | |
| lang_prediction_scores, cross_relationship_score = self.cls(lang_output, pooled_output) | |
| if self.task_qa: | |
| answer_score = self.answer_head(pooled_output) | |
| else: | |
| answer_score = pooled_output[0][0] | |
| total_loss = ( | |
| None | |
| if (labels is None and matched_label is None and obj_labels is None and ans is None) | |
| else torch.tensor(0.0, device=device) | |
| ) | |
| if labels is not None and self.task_mask_lm: | |
| masked_lm_loss = self.loss_fcts["ce"]( | |
| lang_prediction_scores.view(-1, self.config.vocab_size), | |
| labels.view(-1), | |
| ) | |
| total_loss += masked_lm_loss | |
| if matched_label is not None and self.task_matched: | |
| matched_loss = self.loss_fcts["ce"](cross_relationship_score.view(-1, 2), matched_label.view(-1)) | |
| total_loss += matched_loss | |
| if obj_labels is not None and self.task_obj_predict: | |
| total_visual_loss = torch.tensor(0.0, device=input_ids.device) | |
| visual_prediction_scores_dict = self.obj_predict_head(visual_output) | |
| for key, key_info in self.visual_losses.items(): | |
| label, mask_conf = obj_labels[key] | |
| output_dim = key_info["num"] | |
| loss_fct_name = key_info["loss"] | |
| label_shape = key_info["shape"] | |
| weight = self.visual_loss_normalizer | |
| visual_loss_fct = self.loss_fcts[loss_fct_name] | |
| visual_prediction_scores = visual_prediction_scores_dict[key] | |
| visual_loss = visual_loss_fct( | |
| visual_prediction_scores.view(-1, output_dim), | |
| label.view(*label_shape), | |
| ) | |
| if visual_loss.dim() > 1: # Regression Losses | |
| visual_loss = visual_loss.mean(1) | |
| visual_loss = (visual_loss * mask_conf.view(-1)).mean() * weight | |
| total_visual_loss += visual_loss | |
| total_loss += total_visual_loss | |
| if ans is not None and self.task_qa: | |
| answer_loss = self.loss_fcts["ce"](answer_score.view(-1, self.num_qa_labels), ans.view(-1)) | |
| total_loss += answer_loss | |
| if not return_dict: | |
| output = ( | |
| lang_prediction_scores, | |
| cross_relationship_score, | |
| answer_score, | |
| ) + lxmert_output[3:] | |
| return ((total_loss,) + output) if total_loss is not None else output | |
| return LxmertForPreTrainingOutput( | |
| loss=total_loss, | |
| prediction_logits=lang_prediction_scores, | |
| cross_relationship_score=cross_relationship_score, | |
| question_answering_score=answer_score, | |
| language_hidden_states=lxmert_output.language_hidden_states, | |
| vision_hidden_states=lxmert_output.vision_hidden_states, | |
| language_attentions=lxmert_output.language_attentions, | |
| vision_attentions=lxmert_output.vision_attentions, | |
| cross_encoder_attentions=lxmert_output.cross_encoder_attentions, | |
| ) | |
| class LxmertForQuestionAnswering(LxmertPreTrainedModel): | |
| def __init__(self, config): | |
| super().__init__(config) | |
| # Configuration | |
| self.config = config | |
| self.num_qa_labels = config.num_qa_labels | |
| self.visual_loss_normalizer = config.visual_loss_normalizer | |
| # Lxmert backbone | |
| self.lxmert = LxmertModel(config) | |
| self.answer_head = LxmertVisualAnswerHead(config, self.num_qa_labels) | |
| # Weight initialization | |
| self.init_weights() | |
| # Loss function | |
| self.loss = CrossEntropyLoss() | |
| def resize_num_qa_labels(self, num_labels): | |
| """ | |
| Build a resized question answering linear layer Module from a provided new linear layer. Increasing the size | |
| will add newly initialized weights. Reducing the size will remove weights from the end | |
| Args: | |
| num_labels (:obj:`int`, `optional`): | |
| New number of labels in the linear layer weight matrix. Increasing the size will add newly initialized | |
| weights at the end. Reducing the size will remove weights from the end. If not provided or :obj:`None`, | |
| just returns a pointer to the qa labels :obj:`torch.nn.Linear`` module of the model without doing | |
| anything. | |
| Return: | |
| :obj:`torch.nn.Linear`: Pointer to the resized Linear layer or the old Linear layer | |
| """ | |
| cur_qa_logit_layer = self.get_qa_logit_layer() | |
| if num_labels is None or cur_qa_logit_layer is None: | |
| return | |
| new_qa_logit_layer = self._resize_qa_labels(num_labels) | |
| self.config.num_qa_labels = num_labels | |
| self.num_qa_labels = num_labels | |
| return new_qa_logit_layer | |
| def _resize_qa_labels(self, num_labels): | |
| cur_qa_logit_layer = self.get_qa_logit_layer() | |
| new_qa_logit_layer = self._get_resized_qa_labels(cur_qa_logit_layer, num_labels) | |
| self._set_qa_logit_layer(new_qa_logit_layer) | |
| return self.get_qa_logit_layer() | |
| def get_qa_logit_layer(self) -> nn.Module: | |
| """ | |
| Returns the the linear layer that produces question answering logits | |
| Returns: | |
| :obj:`nn.Module`: A torch module mapping the question answering prediction hidden states. :obj:`None`: A | |
| NoneType object if Lxmert does not have the visual answering head. | |
| """ | |
| if hasattr(self, "answer_head"): | |
| return self.answer_head.logit_fc[-1] | |
| def _set_qa_logit_layer(self, qa_logit_layer): | |
| self.answer_head.logit_fc[-1] = qa_logit_layer | |
| def _get_resized_qa_labels(self, cur_qa_logit_layer, num_labels): | |
| if num_labels is None: | |
| return cur_qa_logit_layer | |
| cur_qa_labels, hidden_dim = cur_qa_logit_layer.weight.size() | |
| if cur_qa_labels == num_labels: | |
| return cur_qa_logit_layer | |
| # Build new linear output | |
| if getattr(cur_qa_logit_layer, "bias", None) is not None: | |
| new_qa_logit_layer = nn.Linear(hidden_dim, num_labels) | |
| else: | |
| new_qa_logit_layer = nn.Linear(hidden_dim, num_labels, bias=False) | |
| new_qa_logit_layer.to(cur_qa_logit_layer.weight.device) | |
| # initialize all new labels | |
| self._init_weights(new_qa_logit_layer) | |
| # Copy labels from the previous weights | |
| num_labels_to_copy = min(cur_qa_labels, num_labels) | |
| new_qa_logit_layer.weight.data[:num_labels_to_copy, :] = cur_qa_logit_layer.weight.data[:num_labels_to_copy, :] | |
| if getattr(cur_qa_logit_layer, "bias", None) is not None: | |
| new_qa_logit_layer.bias.data[:num_labels_to_copy] = cur_qa_logit_layer.bias.data[:num_labels_to_copy] | |
| return new_qa_logit_layer | |
| def forward( | |
| self, | |
| input_ids=None, | |
| visual_feats=None, | |
| visual_pos=None, | |
| attention_mask=None, | |
| visual_attention_mask=None, | |
| token_type_ids=None, | |
| inputs_embeds=None, | |
| labels=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| r""" | |
| labels: (``Torch.Tensor`` of shape ``(batch_size)``, `optional`): | |
| A one-hot representation of the correct answer | |
| Returns: | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| lxmert_output = self.lxmert( | |
| input_ids=input_ids, | |
| visual_feats=visual_feats, | |
| visual_pos=visual_pos, | |
| token_type_ids=token_type_ids, | |
| attention_mask=attention_mask, | |
| visual_attention_mask=visual_attention_mask, | |
| inputs_embeds=inputs_embeds, | |
| output_hidden_states=output_hidden_states, | |
| output_attentions=output_attentions, | |
| return_dict=return_dict, | |
| ) | |
| pooled_output = lxmert_output[2] | |
| answer_score = self.answer_head(pooled_output) | |
| loss = None | |
| if labels is not None: | |
| loss = self.loss(answer_score.view(-1, self.num_qa_labels), labels.view(-1)) | |
| if not return_dict: | |
| output = (answer_score,) + lxmert_output[3:] | |
| return (loss,) + output if loss is not None else output | |
| self.vis_shape = lxmert_output.vision_output.shape | |
| return LxmertForQuestionAnsweringOutput( | |
| loss=loss, | |
| question_answering_score=answer_score, | |
| language_hidden_states=lxmert_output.language_hidden_states, | |
| vision_hidden_states=lxmert_output.vision_hidden_states, | |
| language_attentions=lxmert_output.language_attentions, | |
| vision_attentions=lxmert_output.vision_attentions, | |
| cross_encoder_attentions=lxmert_output.cross_encoder_attentions, | |
| ) | |
| def relprop(self, cam, **kwargs): | |
| cam_lang = self.answer_head.relprop(cam, **kwargs) | |
| cam_vis = torch.zeros(self.vis_shape).to(cam_lang.device) | |
| cam_lang, cam_vis = self.lxmert.relprop((cam_lang, cam_vis), **kwargs) | |
| return cam_lang, cam_vis |