Update app.py
Browse files
app.py
CHANGED
|
@@ -5,146 +5,122 @@ import os
|
|
| 5 |
import requests
|
| 6 |
import base64
|
| 7 |
|
| 8 |
-
# 假设 libra_eval 在你的 python 包 libra.eval 中
|
| 9 |
from libra.eval import libra_eval
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
image_file=image_files,
|
| 21 |
-
query=prompt,
|
| 22 |
-
temperature=0.9,
|
| 23 |
-
top_p=0.8,
|
| 24 |
-
max_new_tokens=512
|
| 25 |
-
)
|
| 26 |
-
print(result)
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
# uploaded_prior: str,
|
| 32 |
-
# temperature: float,
|
| 33 |
-
# top_p: float,
|
| 34 |
-
# num_beams: int,
|
| 35 |
-
# max_new_tokens: int
|
| 36 |
-
# ) -> str:
|
| 37 |
-
# """
|
| 38 |
-
# 核心推理函数:
|
| 39 |
-
# 1. 仅通过用户上传的图片获取图像文件路径
|
| 40 |
-
# 2. 调用 libra_eval 来生成报告描述
|
| 41 |
-
# 3. 返回生成的结果或错误消息
|
| 42 |
-
# """
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
# # 模型路径
|
| 49 |
-
# model_path = "X-iZhang/libra-v1.0-7b"
|
| 50 |
-
# conv_mode = "libra_v1"
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
# model_path=model_path,
|
| 57 |
-
# model_base=None, # 如果有必要,可指定基础模型
|
| 58 |
-
# image_file=[uploaded_current, uploaded_prior], # 两张本地图片路径
|
| 59 |
-
# query=prompt,
|
| 60 |
-
# temperature=temperature,
|
| 61 |
-
# top_p=top_p,
|
| 62 |
-
# num_beams=num_beams,
|
| 63 |
-
# length_penalty=1.0,
|
| 64 |
-
# num_return_sequences=1,
|
| 65 |
-
# conv_mode=conv_mode,
|
| 66 |
-
# max_new_tokens=max_new_tokens
|
| 67 |
-
# )
|
| 68 |
-
# print("After calling libra_eval, result:", output)
|
| 69 |
-
# return output
|
| 70 |
-
# except Exception as e:
|
| 71 |
-
# return f"An error occurred: {str(e)}"
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
-
# # 参数调节
|
| 97 |
-
# with gr.Row():
|
| 98 |
-
# temperature_slider = gr.Slider(
|
| 99 |
-
# label="Temperature",
|
| 100 |
-
# minimum=0.1,
|
| 101 |
-
# maximum=1.0,
|
| 102 |
-
# step=0.1,
|
| 103 |
-
# value=0.7
|
| 104 |
-
# )
|
| 105 |
-
# top_p_slider = gr.Slider(
|
| 106 |
-
# label="Top P",
|
| 107 |
-
# minimum=0.1,
|
| 108 |
-
# maximum=1.0,
|
| 109 |
-
# step=0.1,
|
| 110 |
-
# value=0.8
|
| 111 |
-
# )
|
| 112 |
-
# num_beams_slider = gr.Slider(
|
| 113 |
-
# label="Number of Beams",
|
| 114 |
-
# minimum=1,
|
| 115 |
-
# maximum=20,
|
| 116 |
-
# step=1,
|
| 117 |
-
# value=2
|
| 118 |
-
# )
|
| 119 |
-
# max_tokens_slider = gr.Slider(
|
| 120 |
-
# label="Max New Tokens",
|
| 121 |
-
# minimum=10,
|
| 122 |
-
# maximum=4096,
|
| 123 |
-
# step=10,
|
| 124 |
-
# value=128
|
| 125 |
-
# )
|
| 126 |
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
# )
|
| 132 |
|
| 133 |
-
# # 点击按钮时触发的推理逻辑
|
| 134 |
-
# generate_button = gr.Button("Generate Description")
|
| 135 |
-
# generate_button.click(
|
| 136 |
-
# fn=generate_radiology_description,
|
| 137 |
-
# inputs=[
|
| 138 |
-
# prompt_input,
|
| 139 |
-
# uploaded_current,
|
| 140 |
-
# uploaded_prior,
|
| 141 |
-
# temperature_slider,
|
| 142 |
-
# top_p_slider,
|
| 143 |
-
# num_beams_slider,
|
| 144 |
-
# max_tokens_slider
|
| 145 |
-
# ],
|
| 146 |
-
# outputs=output_text
|
| 147 |
-
# )
|
| 148 |
|
| 149 |
-
|
| 150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import requests
|
| 6 |
import base64
|
| 7 |
|
|
|
|
| 8 |
from libra.eval import libra_eval
|
| 9 |
|
| 10 |
+
def generate_radiology_description(
|
| 11 |
+
prompt: str,
|
| 12 |
+
uploaded_current: str,
|
| 13 |
+
uploaded_prior: str,
|
| 14 |
+
temperature: float,
|
| 15 |
+
top_p: float,
|
| 16 |
+
num_beams: int,
|
| 17 |
+
max_new_tokens: int
|
| 18 |
+
) -> str:
|
| 19 |
|
| 20 |
+
|
| 21 |
+
if not uploaded_current or not uploaded_prior:
|
| 22 |
+
return "Please upload both current and prior images."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
|
| 25 |
+
model_path = "X-iZhang/libra-v1.0-7b"
|
| 26 |
+
conv_mode = "libra_v1"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
try:
|
| 29 |
+
|
| 30 |
+
print("Before calling libra_eval")
|
| 31 |
+
output = libra_eval(
|
| 32 |
+
model_path=model_path,
|
| 33 |
+
model_base=None,
|
| 34 |
+
image_file=[uploaded_current, uploaded_prior],
|
| 35 |
+
query=prompt,
|
| 36 |
+
temperature=temperature,
|
| 37 |
+
top_p=top_p,
|
| 38 |
+
num_beams=num_beams,
|
| 39 |
+
length_penalty=1.0,
|
| 40 |
+
num_return_sequences=1,
|
| 41 |
+
conv_mode=conv_mode,
|
| 42 |
+
max_new_tokens=max_new_tokens
|
| 43 |
+
)
|
| 44 |
+
print("After calling libra_eval, result:", output)
|
| 45 |
+
return output
|
| 46 |
+
except Exception as e:
|
| 47 |
+
return f"An error occurred: {str(e)}"
|
| 48 |
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
with gr.Blocks() as demo:
|
| 51 |
+
|
| 52 |
+
gr.Markdown("# Libra Radiology Report Generator (Local Upload Only)")
|
| 53 |
+
gr.Markdown("Upload **Current** and **Prior** images below to generate a radiology description using the Libra model.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
|
| 56 |
+
prompt_input = gr.Textbox(
|
| 57 |
+
label="Prompt",
|
| 58 |
+
value="Describe the key findings in these two images."
|
| 59 |
+
)
|
| 60 |
|
| 61 |
+
|
| 62 |
+
with gr.Row():
|
| 63 |
+
uploaded_current = gr.Image(
|
| 64 |
+
label="Upload Current Image",
|
| 65 |
+
type="filepath"
|
| 66 |
+
)
|
| 67 |
+
uploaded_prior = gr.Image(
|
| 68 |
+
label="Upload Prior Image",
|
| 69 |
+
type="filepath"
|
| 70 |
+
)
|
| 71 |
|
| 72 |
+
|
| 73 |
+
with gr.Row():
|
| 74 |
+
temperature_slider = gr.Slider(
|
| 75 |
+
label="Temperature",
|
| 76 |
+
minimum=0.1,
|
| 77 |
+
maximum=1.0,
|
| 78 |
+
step=0.1,
|
| 79 |
+
value=0.7
|
| 80 |
+
)
|
| 81 |
+
top_p_slider = gr.Slider(
|
| 82 |
+
label="Top P",
|
| 83 |
+
minimum=0.1,
|
| 84 |
+
maximum=1.0,
|
| 85 |
+
step=0.1,
|
| 86 |
+
value=0.8
|
| 87 |
+
)
|
| 88 |
+
num_beams_slider = gr.Slider(
|
| 89 |
+
label="Number of Beams",
|
| 90 |
+
minimum=1,
|
| 91 |
+
maximum=20,
|
| 92 |
+
step=1,
|
| 93 |
+
value=2
|
| 94 |
+
)
|
| 95 |
+
max_tokens_slider = gr.Slider(
|
| 96 |
+
label="Max New Tokens",
|
| 97 |
+
minimum=10,
|
| 98 |
+
maximum=4096,
|
| 99 |
+
step=10,
|
| 100 |
+
value=128
|
| 101 |
+
)
|
| 102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
+
output_text = gr.Textbox(
|
| 105 |
+
label="Generated Description",
|
| 106 |
+
lines=10
|
| 107 |
+
)
|
|
|
|
| 108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
+
generate_button = gr.Button("Generate Description")
|
| 111 |
+
generate_button.click(
|
| 112 |
+
fn=generate_radiology_description,
|
| 113 |
+
inputs=[
|
| 114 |
+
prompt_input,
|
| 115 |
+
uploaded_current,
|
| 116 |
+
uploaded_prior,
|
| 117 |
+
temperature_slider,
|
| 118 |
+
top_p_slider,
|
| 119 |
+
num_beams_slider,
|
| 120 |
+
max_tokens_slider
|
| 121 |
+
],
|
| 122 |
+
outputs=output_text
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
if __name__ == "__main__":
|
| 126 |
+
demo.launch()
|