File size: 18,092 Bytes
bad8293 4a3b8b3 bad8293 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
from collections import defaultdict
import stanza
import warnings
import logging
import os
import re
from nlg.rouge.rouge import Rouge
from nlg.bleu.bleu import Bleu
from nlg.bertscore.bertscore import BertScore
from radgraph import F1RadGraph
from factual.green_score import GREEN
from factual.RaTEScore import RaTEScore
from factual.f1temporal import F1Temporal
from torch import nn
import pandas as pd
import numpy as np
from sklearn.metrics import classification_report
from sklearn.exceptions import UndefinedMetricWarning
import json
from factual.f1chexbert import F1CheXbert
import nltk
from utils import clean_numbered_list
from factual.RadCliQv1.radcliq import CompositeMetric
from factual.SRRBert.srr_bert import SRRBert, srr_bert_parse_sentences
from nlg.radevalbertscore import RadEvalBERTScorer
from utils import compare_systems
# Suppress Warning
os.environ["TOKENIZERS_PARALLELISM"] = "false"
warnings.filterwarnings('ignore')
logging.basicConfig(level=logging.ERROR)
class RadEval():
def __init__(self,
do_radgraph=False,
do_green=False,
do_bleu=False,
do_rouge=False,
do_bertscore=False,
do_srr_bert=False,
do_chexbert=False,
do_ratescore=False,
do_radcliq=False,
do_radeval_bertsore=False,
do_temporal=False,
do_details=False,
):
super(RadEval, self).__init__()
self.do_radgraph = do_radgraph
self.do_green = do_green
self.do_bleu = do_bleu
self.do_rouge = do_rouge
self.do_bertscore = do_bertscore
self.do_srr_bert = do_srr_bert
self.do_chexbert = do_chexbert
self.do_ratescore = do_ratescore
self.do_radcliq = do_radcliq
self.do_temporal = do_temporal
self.do_radeval_bertsore = do_radeval_bertsore
self.do_details = do_details
# Initialize scorers only once
if self.do_radgraph:
self.radgraph_scorer = F1RadGraph(reward_level="all", model_type="radgraph-xl")
if self.do_bleu:
self.bleu_scorer = Bleu()
self.bleu_scorer_1 = Bleu(n=1)
self.bleu_scorer_2 = Bleu(n=2)
self.bleu_scorer_3 = Bleu(n=3)
if self.do_bertscore:
self.bertscore_scorer = BertScore(model_type='distilbert-base-uncased',
num_layers=5)
if self.do_green:
# Initialize green scorer here if needed
self.green_scorer = GREEN("StanfordAIMI/GREEN-radllama2-7b",
output_dir=".")
if self.do_rouge:
self.rouge_scorers = {
"rouge1": Rouge(rouges=["rouge1"]),
"rouge2": Rouge(rouges=["rouge2"]),
"rougeL": Rouge(rouges=["rougeL"])
}
if self.do_srr_bert:
nltk.download('punkt_tab', quiet=True)
self.srr_bert_scorer = SRRBert(model_type="leaves_with_statuses")
if self.do_chexbert:
self.chexbert_scorer = F1CheXbert()
if self.do_ratescore:
self.ratescore_scorer = RaTEScore()
if self.do_radcliq:
self.radcliq_scorer = CompositeMetric()
if self.do_temporal:
stanza.download('en', package='radiology', processors={'ner': 'radiology'})
self.F1Temporal = F1Temporal
if self.do_radeval_bertsore:
self.radeval_bertsore = RadEvalBERTScorer(
model_type="IAMJB/RadEvalModernBERT",
num_layers=22,
use_fast_tokenizer=True,
rescale_with_baseline=False)
# Store the metric keys
self.metric_keys = []
if self.do_radgraph:
self.metric_keys.extend(["radgraph_simple", "radgraph_partial", "radgraph_complete"])
if self.do_bleu:
self.metric_keys.append("bleu")
if self.do_green:
self.metric_keys.append("green")
if self.do_bertscore:
self.metric_keys.append("bertscore")
if self.do_rouge:
self.metric_keys.extend(self.rouge_scorers.keys())
if self.do_srr_bert:
self.metric_keys.extend(["samples_avg_precision", "samples_avg_recall", "samples_avg_f1-score"])
if self.do_chexbert:
self.metric_keys.extend([
"chexbert-5_micro avg_f1-score",
"chexbert-all_micro avg_f1-score",
"chexbert-5_macro avg_f1-score",
"chexbert-all_macro avg_f1-score"
])
if self.do_ratescore:
self.metric_keys.append("ratescore")
if self.do_radcliq:
self.metric_keys.append("radcliqv1")
if self.do_temporal:
self.metric_keys.append("temporal_f1")
if self.do_radeval_bertsore:
self.metric_keys.append("radeval_bertsore")
def __call__(self, refs, hyps):
if not (isinstance(hyps, list) and isinstance(refs, list)):
raise TypeError("hyps and refs must be of type list")
if len(hyps) != len(refs):
raise ValueError("hyps and refs lists don't have the same size")
if len(refs) == 0:
return {}
scores = self.compute_scores(refs=refs, hyps=hyps)
return scores
def compute_scores(self, refs, hyps):
if not (isinstance(hyps, list) and isinstance(refs, list)):
raise TypeError("hyps and refs must be of type list")
if len(hyps) != len(refs):
raise ValueError("hyps and refs lists don't have the same size")
scores = {}
if self.do_radgraph:
radgraph_scores = self.radgraph_scorer(refs=refs, hyps=hyps)
if self.do_details:
f1_scores = radgraph_scores[0]
individual_scores = radgraph_scores[1]
hyps_entities = radgraph_scores[2]
refs_entities = radgraph_scores[3]
scores["radgraph"] = {
"radgraph_simple": f1_scores[0],
"radgraph_partial": f1_scores[1],
"radgraph_complete": f1_scores[2],
"reward_list": individual_scores,
"hypothesis_annotation_lists": hyps_entities,
"reference_annotation_lists": refs_entities
}
else:
radgraph_scores = radgraph_scores[0]
scores["radgraph_simple"] = radgraph_scores[0]
scores["radgraph_partial"] = radgraph_scores[1]
scores["radgraph_complete"] = radgraph_scores[2]
if self.do_bleu:
if self.do_details:
bleu_1_score = self.bleu_scorer_1(refs, hyps)[0]
bleu_2_score = self.bleu_scorer_2(refs, hyps)[0]
bleu_3_score = self.bleu_scorer_3(refs, hyps)[0]
bleu_4_score = self.bleu_scorer(refs, hyps)[0]
scores["bleu"] = {
"bleu_1": bleu_1_score,
"bleu_2": bleu_2_score,
"bleu_3": bleu_3_score,
"bleu_4": bleu_4_score
}
else:
scores["bleu"] = self.bleu_scorer(refs, hyps)[0]
if self.do_bertscore:
if self.do_details:
bertscore_scores, sample_scores = self.bertscore_scorer(refs, hyps)
scores["bertscore"] = {
"mean_score": bertscore_scores,
"sample_scores": sample_scores
}
else:
scores["bertscore"] = self.bertscore_scorer(refs, hyps)[0]
if self.do_green:
# Use the initialized green scorer
mean, std, sample_scores, summary, _ = self.green_scorer(refs, hyps)
if self.do_details:
scores["green"] = {
"mean": mean,
"std": std,
"sample_scores": sample_scores,
"summary": summary
}
else:
scores["green"] = mean
if self.do_rouge:
if self.do_details:
rouge_scores = {}
for key, scorer in self.rouge_scorers.items():
mean, sample_scores = scorer(refs, hyps)
rouge_scores[key] = {
"mean_score": mean,
"sample_scores": sample_scores
}
scores["rouge"] = rouge_scores
else:
for key, scorer in self.rouge_scorers.items():
scores[key] = scorer(refs, hyps)[0]
if self.do_srr_bert:
# Clean reports before tokenization
parsed_refs = [srr_bert_parse_sentences(ref) for ref in refs]
parsed_hyps = [srr_bert_parse_sentences(hyp) for hyp in hyps]
section_level_hyps_pred = []
section_level_refs_pred = []
for parsed_hyp, parsed_ref in zip(parsed_hyps, parsed_refs):
outputs, _ = self.srr_bert_scorer(sentences=parsed_ref + parsed_hyp)
refs_preds = outputs[:len(parsed_ref)]
hyps_preds = outputs[len(parsed_ref):]
merged_refs_preds = np.any(refs_preds, axis=0).astype(int)
merged_hyps_preds = np.any(hyps_preds, axis=0).astype(int)
section_level_hyps_pred.append(merged_hyps_preds)
section_level_refs_pred.append(merged_refs_preds)
label_names = [label for label, idx in sorted(self.srr_bert_scorer.mapping.items(), key=lambda x: x[1])]
classification_dict = classification_report(section_level_refs_pred,
section_level_hyps_pred,
target_names=label_names,
output_dict=True,
zero_division=0)
if self.do_details:
label_scores = {}
for label in label_names:
if label in classification_dict:
f1 = classification_dict[label]["f1-score"]
support = classification_dict[label]["support"]
if f1 > 0 or support > 0:
label_scores[label] = {
"f1-score": f1,
"precision": classification_dict[label]["precision"],
"recall": classification_dict[label]["recall"],
"support": support
}
scores["srr_bert"] = {
"srr_bert_weighted_f1": classification_dict["weighted avg"]["f1-score"],
"srr_bert_weighted_precision": classification_dict["weighted avg"]["precision"],
"srr_bert_weighted_recall": classification_dict["weighted avg"]["recall"],
"label_scores": label_scores
}
else:
scores["srr_bert_weighted_f1"] = classification_dict["weighted avg"]["f1-score"]
scores["srr_bert_weighted_precision"] = classification_dict["weighted avg"]["precision"]
scores["srr_bert_weighted_recall"] = classification_dict["weighted avg"]["recall"]
if self.do_chexbert:
accuracy, accuracy_per_sample, chexbert_all, chexbert_5 = self.chexbert_scorer(hyps, refs)
if self.do_details:
chexbert_5_labels = {
k: v["f1-score"]
for k, v in list(chexbert_5.items())[:-4]
}
chexbert_all_labels = {
k: v["f1-score"]
for k, v in list(chexbert_all.items())[:-4]
}
scores["chexbert"] = {
"chexbert-5_micro avg_f1-score": chexbert_5["micro avg"]["f1-score"],
"chexbert-all_micro avg_f1-score": chexbert_all["micro avg"]["f1-score"],
"chexbert-5_macro avg_f1-score": chexbert_5["macro avg"]["f1-score"],
"chexbert-all_macro avg_f1-score": chexbert_all["macro avg"]["f1-score"],
"chexbert-5_weighted_f1": chexbert_5["weighted avg"]["f1-score"],
"chexbert-all_weighted_f1": chexbert_all["weighted avg"]["f1-score"],
"label_scores_f1-score": {
"chexbert-5": chexbert_5_labels,
"chexbert_all": chexbert_all_labels
}
}
else:
scores["chexbert-5_micro avg_f1-score"] = chexbert_5["micro avg"]["f1-score"]
scores["chexbert-all_micro avg_f1-score"] = chexbert_all["micro avg"]["f1-score"]
scores["chexbert-5_macro avg_f1-score"] = chexbert_5["macro avg"]["f1-score"]
scores["chexbert-all_macro avg_f1-score"] = chexbert_all["macro avg"]["f1-score"]
scores["chexbert-5_weighted_f1"] = chexbert_5["weighted avg"]["f1-score"]
scores["chexbert-all_weighted_f1"] = chexbert_all["weighted avg"]["f1-score"]
if self.do_ratescore:
rate_score, pred_pairs_raw ,gt_pairs_raw = self.ratescore_scorer.compute_score(candidate_list=hyps, reference_list=refs)
f1_ratescore = float(np.mean(rate_score))
if self.do_details:
pred_pairs = [
{ent: label for ent, label in sample}
for sample in pred_pairs_raw
]
gt_pairs = [
{ent: label for ent, label in sample}
for sample in gt_pairs_raw
]
scores["ratescore"] = {
"f1-score": f1_ratescore,
"hyps_pairs": pred_pairs,
"refs_pairs": gt_pairs
}
else:
scores["ratescore"] = f1_ratescore
if self.do_radcliq:
mean_scores, detail_scores = self.radcliq_scorer.predict(refs, hyps)
if self.do_details:
scores["radcliq-v1"] = {
"mean_score": mean_scores,
"sample_scores": detail_scores.tolist()
}
else:
scores["radcliq-v1"] = mean_scores
if self.do_temporal:
temporal_scores = self.F1Temporal(predictions=hyps, references=refs)
if self.do_details:
hyp_entities = [
sorted(list(group)) if group else []
for group in temporal_scores.get("prediction_entities", [])
]
ref_entities = [
sorted(list(group)) if group else []
for group in temporal_scores.get("reference_entities", [])
]
scores["temporal_f1"] = {
"f1-score": temporal_scores["f1"],
"hyps_entities": hyp_entities,
"refs_entities": ref_entities
}
else:
scores["temporal_f1"] = temporal_scores["f1"]
if self.do_radeval_bertsore:
radeval_bertsores = self.radeval_bertsore.score(refs=refs, hyps=hyps)
if self.do_details:
scores["radeval_bertsore"] = {
"f1-score": radeval_bertsores[0],
"sample_scores": radeval_bertsores[1].tolist()
}
else:
scores["radeval_bertsore"] = radeval_bertsores[0]
return scores
def main():
refs = [
"No acute cardiopulmonary process.",
"No radiographic findings to suggest pneumonia.",
"1.Status post median sternotomy for CABG with stable cardiac enlargement and calcification of the aorta consistent with atherosclerosis.Relatively lower lung volumes with no focal airspace consolidation appreciated.Crowding of the pulmonary vasculature with possible minimal perihilar edema, but no overt pulmonary edema.No pleural effusions or pneumothoraces.",
"1. Left PICC tip appears to terminate in the distal left brachiocephalic vein.2. Mild pulmonary vascular congestion.3. Interval improvement in aeration of the lung bases with residual streaky opacity likely reflective of atelectasis.Interval resolution of the left pleural effusion.",
"No definite acute cardiopulmonary process.Enlarged cardiac silhouette could be accentuated by patient's positioning.",
"Increased mild pulmonary edema and left basal atelectasis.",
]
hyps = [
"No acute cardiopulmonary process.",
"No radiographic findings to suggest pneumonia.",
"Status post median sternotomy for CABG with stable cardiac enlargement and calcification of the aorta consistent with atherosclerosis.",
"Relatively lower lung volumes with no focal airspace consolidation appreciated.",
"Crowding of the pulmonary vasculature with possible minimal perihilar edema, but no overt pulmonary edema.",
"No pleural effusions or pneumothoraces.",
]
evaluator = RadEval(do_radgraph=True,
do_green=False,
do_bleu=True,
do_rouge=True,
do_bertscore=True,
do_srr_bert=True,
do_chexbert=True,
do_temporal=True,
do_ratescore=True,
do_radcliq=True,
do_radeval_bertsore=True)
results = evaluator(refs=refs, hyps=hyps)
print(json.dumps(results, indent=4))
if __name__ == '__main__':
main()
|