File size: 29,200 Bytes
a388fcc 5322748 d7e938c a388fcc adec6c3 5322748 adec6c3 213781c c5b8c18 02a02fb c5b8c18 ca5d05c c5b8c18 ca5d05c c5b8c18 ca5d05c 213781c ca5d05c 537c1de ca5d05c 537c1de ca5d05c c5b8c18 ca5d05c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 |
import gradio as gr
import sys
import os
import torch
sys.path.append(".")
def setup_cpu_environment():
os.environ['CUDA_VISIBLE_DEVICES'] = ''
torch.set_num_threads(4)
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
os.environ['TRANSFORMERS_CACHE'] = './cache'
setup_cpu_environment()
from RadEval import RadEval, compare_systems
def run_radeval_simple(ref_text, hyp_text, selected_metrics):
"""
Run RadEval with selected metrics on a pair of reference and hypothesis texts
"""
try:
refs = [ref_text.strip()]
hyps = [hyp_text.strip()]
# Configure RadEval based on selected metrics
config = {
'do_radgraph': 'RadGraph F1' in selected_metrics,
'do_bleu': 'BLEU' in selected_metrics,
'do_rouge': 'ROUGE' in selected_metrics,
'do_bertscore': 'BERTScore' in selected_metrics,
'do_chexbert': 'CheXbert F1' in selected_metrics,
'do_ratescore': 'RaTEScore' in selected_metrics,
'do_radcliq': 'RadCliQ' in selected_metrics,
'do_temporal': 'Temporal F1' in selected_metrics,
'do_radeval_bertsore': 'RadEval BERTScore' in selected_metrics,
'do_green': 'GREEN' in selected_metrics,
'do_srr_bert': 'SRR-BERT' in selected_metrics
}
# Initialize RadEval with selected metrics
evaluator = RadEval(**config)
# Run evaluation
results = evaluator(refs=refs, hyps=hyps)
# Prepare results for display
table_data = []
analysis_text = "## π RadEval Results\n\n"
analysis_text += f"**Reference:** {ref_text[:100]}{'...' if len(ref_text) > 100 else ''}\n\n"
analysis_text += f"**Hypothesis:** {hyp_text[:100]}{'...' if len(hyp_text) > 100 else ''}\n\n"
analysis_text += "### Evaluation Scores:\n\n"
for metric, score in results.items():
if isinstance(score, (int, float)):
formatted_score = f"{score:.4f}" if isinstance(score, float) else str(score)
table_data.append([metric, formatted_score])
analysis_text += f"- **{metric}**: {formatted_score}\n"
elif isinstance(score, dict):
# Handle nested metrics
for sub_metric, sub_score in score.items():
if isinstance(sub_score, (int, float)):
formatted_score = f"{sub_score:.4f}" if isinstance(sub_score, float) else str(sub_score)
metric_name = f"{metric}_{sub_metric}"
table_data.append([metric_name, formatted_score])
analysis_text += f"- **{metric_name}**: {formatted_score}\n"
if not table_data:
return "No metrics were computed. Please select at least one metric.", [["No results", ""]]
return analysis_text, table_data
except ImportError as e:
error_msg = f"Import Error: {str(e)}. Please ensure RadEval dependencies are installed."
return error_msg, [["Error", error_msg]]
except Exception as e:
error_msg = f"Evaluation Error: {str(e)}"
return error_msg, [["Error", error_msg]]
# Example pairs for radiology reports
examples = {
"Normal vs Normal": {
"ref": "Heart size is normal. Lungs are clear. No pleural effusion or pneumothorax.",
"hyp": "Cardiac silhouette is within normal limits. Lungs are clear bilaterally. No effusion or pneumothorax identified.",
},
"Pneumonia Case": {
"ref": "Moderate cardiomegaly. Bilateral lower lobe consolidations consistent with pneumonia.",
"hyp": "Enlarged heart. Worsening bilateral infiltrates in the lower lobes suggestive of pneumonia.",
},
"Temporal Comparison": {
"ref": "Compared to prior study, the pleural effusion has increased in size. New bilateral infiltrates are present.",
"hyp": "The pleural effusion is larger than on the previous examination. There are new bilateral pulmonary infiltrates.",
},
"Discordant Reports": {
"ref": "No acute cardiopulmonary process. Normal heart size and lung fields.",
"hyp": "Mild cardiomegaly with bilateral lower lobe atelectasis. Small pleural effusion on the right.",
},
"Ambiguous Language": {
"ref": "There is a small left-sided pleural effusion with adjacent atelectasis.",
"hyp": "Possible small effusion on the left. Atelectasis cannot be excluded.",
},
"Surgical Follow-up": {
"ref": "Status post coronary artery bypass grafting. No evidence of acute complication.",
"hyp": "Post-operative changes from CABG are present. No signs of surgical complication.",
},
"False Positive": {
"ref": "No focal consolidation, pleural effusion, or pneumothorax identified.",
"hyp": "Right lower lobe consolidation concerning for pneumonia.",
},
"Textual Hallucination": {
"ref": "Heart and mediastinum are normal. Lungs are clear.",
"hyp": "Large left pleural effusion with mediastinal shift to the right.",
},
"Negation Challenge": {
"ref": "No evidence of pneumothorax or pleural effusion.",
"hyp": "Evidence of small pneumothorax on the right.",
},
"Fine-grained Difference": {
"ref": "Mild interstitial markings at the lung bases, likely chronic.",
"hyp": "Subtle increased interstitial opacities at both lung bases, likely chronic in nature.",
}
}
def update_fields(choice):
"""Update text fields based on example selection"""
if choice == "Custom":
return gr.update(value="", interactive=True), gr.update(value="", interactive=True)
else:
return (
gr.update(value=examples[choice]["ref"], interactive=False),
gr.update(value=examples[choice]["hyp"], interactive=False)
)
# Available metrics (ordered by computational complexity)
available_metrics = [
"BLEU",
"ROUGE",
"BERTScore",
"Temporal F1",
"RadEval BERTScore",
"RaTEScore",
"RadCliQ",
"SRR-BERT",
"CheXbert F1",
"RadGraph F1",
"GREEN"
]
# Fast metrics for default selection
default_metrics = ["BLEU", "ROUGE", "BERTScore"]
with gr.Blocks(title="RadEval Evaluation", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# ποΈ RadEval Evaluation
**RadEval** is a lightweight, extensible framework for **evaluating radiology reports** using both standard NLP metrics (e.g. BLEU, ROUGE, BERTScore) and **radiology-specific measures** (e.g. RadGraph, CheXbert, GREEN). Whether you're benchmarking generation systems or validating clinical correctness, RadEval offers **comprehensive and interpretable** metrics out of the box.
**β οΈ Performance Warning β οΈ**
The demo is currently running on **CPU**. When using some slower metrics (like RadGraph, CheXbert, GREEN), it may take a while to complete evaluation. Please be patient.
"""
)
with gr.Row():
choice = gr.Radio(
label="π Choose Example or Custom Input",
choices=["Custom"] + list(examples.keys()),
value="Custom",
interactive=True
)
with gr.Row():
with gr.Column(scale=1):
ref_input = gr.Textbox(
label="π Reference Report (Ground Truth)",
lines=5,
placeholder="Enter the reference radiology report here...",
info="The ground truth or expert-written report"
)
with gr.Column(scale=1):
hyp_input = gr.Textbox(
label="π€ Hypothesis Report (Generated)",
lines=5,
placeholder="Enter the generated/predicted radiology report here...",
info="The AI-generated or system-produced report"
)
choice.change(
update_fields,
inputs=choice,
outputs=[ref_input, hyp_input],
)
with gr.Row():
metrics_selection = gr.CheckboxGroup(
label="π― Select Evaluation Metrics",
choices=available_metrics,
value=default_metrics,
interactive=True,
info="Select metrics to compute. Some metrics may take longer (RadGraph, CheXbert, GREEN)."
)
with gr.Row():
run_button = gr.Button("π Run RadEval", variant="primary", size="lg")
with gr.Row():
with gr.Column(scale=2):
analysis_output = gr.Markdown(
value="π **Results will appear here after evaluation...**\n\nSelect your texts and metrics, then click 'Run RadEval'."
)
with gr.Column(scale=1):
table_output = gr.DataFrame(
label="π Detailed Scores",
headers=["Metric", "Score"],
wrap=True
)
# Information section
with gr.Accordion("π‘ Metric Information", open=False):
gr.Markdown(
"""
### π Available Metrics:
**Traditional NLG Metrics:**
- **BLEU**: N-gram overlap between reference and hypothesis
- **ROUGE**: Recall-oriented overlap (ROUGE-1, ROUGE-2, ROUGE-L)
- **BERTScore**: Semantic similarity using BERT embeddings
**Radiology-Specific Metrics:**
- **RadGraph F1**: Entity and relation extraction for radiology
- **CheXbert F1**: Chest X-ray finding classification performance
- **RaTEScore**: Radiology-aware text evaluation score
- **RadCliQ**: Composite metric for radiology reports
- **Temporal F1**: Temporal entity and relationship evaluation
- **RadEval BERTScore**: Specialized BERT for radiology text
- **GREEN**: Generative evaluation with natural language explanations
- **SRR-BERT**: Structured radiology reasoning evaluation
### β‘ Performance Notes:
- **Fast**: BLEU, ROUGE, BERTScore, Temporal F1
- **Medium**: RadEval BERTScore, RaTEScore, RadCliQ, SRR-BERT
- **Slow**: CheXbert F1, RadGraph F1, GREEN (requires model downloads)
"""
)
run_button.click(
run_radeval_simple,
inputs=[ref_input, hyp_input, metrics_selection],
outputs=[analysis_output, table_output]
)
# =============================================================================
# π§ͺ Hypothesis Testing Section
# =============================================================================
def run_hypothesis_testing(systems_data, selected_test_metrics, n_samples, significance_level):
"""
Run statistical significance testing between multiple systems
"""
try:
# Parse systems data (expecting JSON format)
import json
systems_dict = json.loads(systems_data)
# Extract references and systems
if 'references' not in systems_dict or 'systems' not in systems_dict:
return "Error: Please provide both 'references' and 'systems' in the JSON data.", ""
references = systems_dict['references']
systems = systems_dict['systems']
# Validate data integrity
if not references or not systems:
return "Error: References and systems cannot be empty.", ""
if not isinstance(references, list) or not isinstance(systems, dict):
return "Error: References must be a list and systems must be a dictionary.", ""
# Check that all systems have the same number of outputs as references
ref_count = len(references)
for system_name, system_outputs in systems.items():
if not isinstance(system_outputs, list):
return f"Error: System '{system_name}' outputs must be a list.", ""
if len(system_outputs) != ref_count:
return f"Error: System '{system_name}' has {len(system_outputs)} outputs but {ref_count} references provided.", ""
# Validate that all texts are non-empty strings
for i, ref in enumerate(references):
if not isinstance(ref, str) or not ref.strip():
return f"Error: Reference {i+1} is empty or not a string.", ""
for system_name, system_outputs in systems.items():
for i, output in enumerate(system_outputs):
if not isinstance(output, str) or not output.strip():
return f"Error: System '{system_name}' output {i+1} is empty or not a string.", ""
# Initialize evaluators based on selected metrics (fast metrics only)
evaluators = {}
if 'BLEU' in selected_test_metrics:
evaluators['bleu'] = RadEval(do_bleu=True)
if 'ROUGE' in selected_test_metrics:
evaluators['rouge'] = RadEval(do_rouge=True)
if 'BERTScore' in selected_test_metrics:
evaluators['bertscore'] = RadEval(do_bertscore=True)
# Custom metric: average word count
def word_count_metric(hyps, refs):
return sum(len(report.split()) for report in hyps) / len(hyps)
# Build metrics dictionary (following the example structure)
metrics = {}
if 'BLEU' in selected_test_metrics:
# Test the evaluator first
try:
test_result = evaluators['bleu'](references[:1], [systems[list(systems.keys())[0]][0]])
if 'bleu' not in test_result:
return "Error: BLEU evaluator doesn't return 'bleu' key. Available keys: " + str(list(test_result.keys())), ""
metrics['bleu'] = lambda hyps, refs: evaluators['bleu'](refs, hyps)['bleu']
except Exception as bleu_error:
return f"Error testing BLEU evaluator: {str(bleu_error)}", ""
if 'ROUGE' in selected_test_metrics:
try:
test_result = evaluators['rouge'](references[:1], [systems[list(systems.keys())[0]][0]])
for rouge_key in ['rouge1', 'rouge2', 'rougeL']:
if rouge_key not in test_result:
return f"Error: ROUGE evaluator doesn't return '{rouge_key}' key. Available keys: " + str(list(test_result.keys())), ""
metrics['rouge1'] = lambda hyps, refs: evaluators['rouge'](refs, hyps)['rouge1']
metrics['rouge2'] = lambda hyps, refs: evaluators['rouge'](refs, hyps)['rouge2']
metrics['rougeL'] = lambda hyps, refs: evaluators['rouge'](refs, hyps)['rougeL']
except Exception as rouge_error:
return f"Error testing ROUGE evaluator: {str(rouge_error)}", ""
if 'BERTScore' in selected_test_metrics:
try:
test_result = evaluators['bertscore'](references[:1], [systems[list(systems.keys())[0]][0]])
if 'bertscore' not in test_result:
return "Error: BERTScore evaluator doesn't return 'bertscore' key. Available keys: " + str(list(test_result.keys())), ""
metrics['bertscore'] = lambda hyps, refs: evaluators['bertscore'](refs, hyps)['bertscore']
except Exception as bert_error:
return f"Error testing BERTScore evaluator: {str(bert_error)}", ""
if 'custom: Word Count' in selected_test_metrics:
metrics['word_count'] = word_count_metric # β example of a simple custom-defined metric
if not metrics:
return "Error: Please select at least one metric for testing.", ""
# Run significance tests
try:
signatures, scores = compare_systems(
systems=systems,
metrics=metrics,
references=references,
n_samples=int(n_samples),
significance_level=float(significance_level),
print_results=False # We don't need print output for online demo
)
except Exception as compare_error:
return f"Error during significance testing: {str(compare_error)}\n\nThis might be due to:\n1. Empty or invalid text content\n2. Incompatible metric configurations\n3. RadEval library issues", str(compare_error)
# Format results
results_text = "## π§ͺ Hypothesis Testing Results\n\n"
results_text += f"**Parameters:**\n"
results_text += f"- Randomization samples: {n_samples}\n"
results_text += f"- Significance level: {significance_level}\n"
results_text += f"- Number of systems: {len(systems)}\n"
results_text += f"- Number of references: {len(references)}\n\n"
# Significant differences summary
results_text += "### π Significant Differences Summary\n\n"
baseline_name = list(systems.keys())[0] # Assume first one is the baseline
results_text += f"**Baseline system:** {baseline_name}\n\n"
has_significant_differences = False
for system_name in systems.keys():
if system_name == baseline_name:
continue
significant_metrics = []
for metric_name in metrics.keys():
pvalue_key = f"{metric_name}_pvalue"
if pvalue_key in scores[system_name]:
p_val = scores[system_name][pvalue_key]
if p_val < float(significance_level):
significant_metrics.append(metric_name)
if significant_metrics:
results_text += f"**{system_name} vs {baseline_name}:** {', '.join(significant_metrics)} (p < {significance_level})\n\n"
has_significant_differences = True
else:
results_text += f"**{system_name} vs {baseline_name}:** No significant differences\n\n"
if not has_significant_differences:
results_text += "*No statistically significant differences found between systems.*\n\n"
# Add mean scores in table format
results_text += "### π Mean Scores by System\n\n"
try:
baseline_name = list(systems.keys())[0]
# Display each system's results in a clean format
for system_name in systems.keys():
results_text += f"**{system_name.upper()}:**\n\n"
# Create table header
results_text += "| Metric | Score | P-value |\n"
results_text += "|--------|-------|----------|\n"
# Get system data from scores
system_scores = scores.get(system_name, {})
# Add rows for each metric
for metric_name in metrics.keys():
if metric_name in system_scores:
score = system_scores[metric_name]
pvalue_key = f"{metric_name}_pvalue"
# Format score
score_str = f"{score:.4f}" if isinstance(score, (int, float)) else str(score)
# Format p-value (only for non-baseline systems)
if system_name != baseline_name and pvalue_key in system_scores:
pvalue = system_scores[pvalue_key]
pvalue_str = f"{pvalue:.4f}" if isinstance(pvalue, (int, float)) else str(pvalue)
# Mark significant p-values
if isinstance(pvalue, (int, float)) and pvalue < float(significance_level):
pvalue_str += " *"
else:
pvalue_str = "-" if system_name == baseline_name else "N/A"
results_text += f"| {metric_name} | {score_str} | {pvalue_str} |\n"
results_text += "\n"
results_text += "*Note: Baseline system shows scores only. Other systems show scores and p-values comparing to baseline.*\n"
results_text += f"*P-values marked with * are significant (p < {significance_level}).*\n\n"
except Exception as score_error:
results_text += f"Error formatting scores: {str(score_error)}\n\n"
return results_text
except ImportError as e:
return f"Import Error: {str(e)}. Please ensure RadEval with compare_systems is installed."
except json.JSONDecodeError:
return "Error: Invalid JSON format in systems data."
except Exception as e:
return f"Testing Error: {str(e)}"
# Create Hypothesis Testing UI
with gr.Blocks(title="Null Hypothesis Testing", theme=gr.themes.Soft()) as hypothesis_demo:
gr.Markdown(
"""
# π₯οΈ Null Hypothesis Testing
**Statistical significance testing** for comparing multiple radiology report generation systems.
This tool uses **randomization-based significance testing** to determine if differences between systems are statistically meaningful.
**β οΈ Performance Warning β οΈ**
Hypothesis testing with multiple metrics may take some time, especially with larger sample sizes. Please be patient during computation.
"""
)
with gr.Row():
with gr.Column(scale=1.5):
systems_input = gr.Textbox(
label="π Systems Data (JSON Format)",
lines=18,
placeholder="""Enter systems data in JSON format, e.g.:
{
"references": [
"No acute cardiopulmonary process.",
"Mild cardiomegaly with clear lung fields."
],
"systems": {
"baseline": [
"No acute findings.",
"Mild cardiomegaly, clear lungs."
],
"improved": [
"No acute cardiopulmonary process.",
"Mild cardiomegaly with clear lung fields bilaterally."
]
}
}""",
info="Provide reference reports and multiple systems to compare"
)
with gr.Column(scale=1):
test_metrics_selection = gr.CheckboxGroup(
label="π― Select Metrics for Testing",
choices=["BLEU", "ROUGE", "BERTScore", "custom: Word Count"],
value=["BLEU", "ROUGE", "BERTScore"],
interactive=True,
info="Only fast metrics are shown to ensure quick evaluation (slow ones are excluded)"
)
n_samples_input = gr.Number(
label="π Randomization Samples",
value=50,
minimum=10,
maximum=1000,
step=10,
info="Number of randomisation samples (higher = more confidence, but slower)"
)
significance_level_input = gr.Number(
label="π Significance Level (Ξ±)",
value=0.05,
minimum=0.01,
maximum=0.10,
step=0.01,
info="Alpha level for significance testing"
)
example_button = gr.Button("π Load Example Data", variant="secondary")
clear_button = gr.Button("ποΈ Clear Data", variant="secondary")
with gr.Row():
test_button = gr.Button("π§ͺ Run Hypothesis Testing", variant="primary", size="lg")
with gr.Row():
test_results = gr.Markdown(
value="π **Test results will appear here...**\n\nClick 'Load Example Data' to see sample input, then click 'Run Hypothesis Testing' to see results."
)
# Example data button
def load_example_data():
example_data = {
"references": [
"No acute cardiopulmonary process.",
"No radiographic findings to suggest pneumonia.",
"Mild cardiomegaly with clear lung fields.",
"Small pleural effusion on the right side.",
"Status post cardiac surgery with stable appearance."
],
"systems": {
"baseline": [
"No acute findings.",
"No pneumonia.",
"Mild cardiomegaly, clear lungs.",
"Small right pleural effusion.",
"Post-cardiac surgery, stable."
],
"improved": [
"No acute cardiopulmonary process.",
"No radiographic findings suggesting pneumonia.",
"Mild cardiomegaly with clear lung fields bilaterally.",
"Small pleural effusion present on the right side.",
"Status post cardiac surgery with stable appearance."
],
"poor": [
"Normal.",
"OK.",
"Heart big.",
"Some fluid.",
"Surgery done."
]
}
}
import json
return json.dumps(example_data, indent=2)
example_button.click(
load_example_data,
outputs=systems_input
)
clear_button.click(
lambda: "",
outputs=systems_input
)
test_button.click(
run_hypothesis_testing,
inputs=[systems_input, test_metrics_selection, n_samples_input, significance_level_input],
outputs=[test_results]
)
with gr.Accordion("π‘ Hypothesis Testing Information", open=False):
gr.Markdown(
"""
### π¬ How it Works:
This tool performs **randomization-based significance testing** to compare multiple systems:
1. **Null Hypothesis**: No difference between systems
2. **Randomization**: Randomly permute system outputs multiple times
3. **P-value Calculation**: Proportion of permutations where random difference β₯ observed difference
4. **Significance**: If p-value < Ξ±, reject null hypothesis (systems are significantly different)
### π Input Format:
- **References**: Ground truth reports
- **Systems**: Multiple systems to compare (each with same number of outputs as references)
- **Metrics**: Evaluation metrics to use for comparison
### π Output:
- **Significance Matrix**: P-values for all pairwise system comparisons
- **Mean Scores**: Average performance of each system on each metric
- **Bold p-values**: Indicate statistically significant differences
### β‘ Performance:
- **Fast Metrics Only**: This tool only includes BLEU, ROUGE, BERTScore, and Word Count for optimal performance
- **Excluded Slow Metrics**: RadGraph F1, CheXbert F1 are excluded to ensure reasonable computation time
- More randomization samples = more accurate p-values but slower computation
- Recommended: 50-100 samples for quick testing, 1000+ for publication
"""
)
# Combine both demos using gr.Blocks to add a header
with gr.Blocks(
title="RadEval: A framework for radiology text evaluation",
theme=gr.themes.Soft(),
css="""
.tab-nav button {
font-weight: bold !important;
border: 2px solid #e0e7ff !important;
border-radius: 10px !important;
margin: 0 5px !important;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: white !important;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2) !important;
transition: all 0.3s ease !important;
}
.tab-nav button:hover {
transform: translateY(-2px) !important;
box-shadow: 0 6px 20px rgba(0, 0, 0, 0.3) !important;
background: linear-gradient(135deg, #764ba2 0%, #667eea 100%) !important;
}
.tab-nav button.selected {
background: linear-gradient(135deg, #ff6b6b 0%, #ee5a24 100%) !important;
border-color: #ff6b6b !important;
transform: translateY(-1px) !important;
box-shadow: 0 8px 25px rgba(255, 107, 107, 0.4) !important;
}
"""
) as combined_demo:
gr.Markdown(
"""
# π©Ί RadEval: A framework for radiology text evaluation
### [Github](https://github.com/jbdel/RadEval) | [PyPI](https://pypi.org/project/RadEval) | [Video](https://justin13601.github.io/files/radeval.mp4) | [arXiv]() | [RadEval_ModernBERT Model](https://huggingface.co/IAMJB/RadEvalModernBERT) | [Expert Dataset]()
"""
)
tabs = gr.TabbedInterface(
[demo, hypothesis_demo],
["ποΈ RadEval Evaluation", "π₯οΈ Null Hypothesis Testing"]
)
if __name__ == "__main__":
combined_demo.launch()
|