Spaces:
Running
Running
File size: 9,196 Bytes
ad4721b b39464b ad4721b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
from torch import nn
from .until_module import PreTrainedModel
from .module_cross import CrossModel, CrossConfig
from .module_decoder import DecoderModel, DecoderConfig
from utils.module_clip import CLIP, convert_weights
from torch.nn.utils.rnn import pad_packed_sequence, pack_padded_sequence
def update_attr(target_name, target_config, target_attr_name, source_config, source_attr_name, default_value=None):
if hasattr(source_config, source_attr_name):
if default_value is None or getattr(source_config, source_attr_name) != default_value:
setattr(target_config, target_attr_name, getattr(source_config, source_attr_name))
return target_config
class CLIP4IDCPreTrainedModel(PreTrainedModel, nn.Module):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
def __init__(self, cross_config, decoder_config, *inputs, **kwargs):
super(CLIP4IDCPreTrainedModel, self).__init__(cross_config, decoder_config)
self.cross_config = cross_config
self.decoder_config = decoder_config
self.clip = None
self.cross = None
@classmethod
def from_pretrained(cls, cross_model_name, decoder_model_name, state_dict=None, cache_dir=None, type_vocab_size=2, *inputs, **kwargs):
if state_dict is None: state_dict = {}
pretrained_clip_name = "ViT-B/16"
clip_state_dict = CLIP.get_config(pretrained_clip_name=pretrained_clip_name)
for key, val in clip_state_dict.items():
new_key = "clip." + key
if new_key not in state_dict:
state_dict[new_key] = val.clone()
cross_config, _ = CrossConfig.get_config(cross_model_name, cache_dir, type_vocab_size, state_dict=None)
decoder_config, _ = DecoderConfig.get_config(decoder_model_name, cache_dir, type_vocab_size, state_dict=None)
model = cls(cross_config, decoder_config, clip_state_dict, *inputs, **kwargs)
## ===> Initialization trick [HARD CODE]
if model.linear_patch == "3d":
contain_conv2 = False
for key in state_dict.keys():
if key.find("visual.conv2.weight") > -1:
contain_conv2 = True
break
if contain_conv2 is False and hasattr(model.clip.visual, "conv2"):
cp_weight = state_dict["clip.visual.conv1.weight"].clone()
kernel_size = model.clip.visual.conv2.weight.size(2)
conv2_size = model.clip.visual.conv2.weight.size()
conv2_size = list(conv2_size)
left_conv2_size = conv2_size.copy()
right_conv2_size = conv2_size.copy()
left_conv2_size[2] = (kernel_size - 1) // 2
right_conv2_size[2] = kernel_size - 1 - left_conv2_size[2]
left_zeros, right_zeros = None, None
if left_conv2_size[2] > 0:
left_zeros = torch.zeros(*tuple(left_conv2_size), dtype=cp_weight.dtype, device=cp_weight.device)
if right_conv2_size[2] > 0:
right_zeros = torch.zeros(*tuple(right_conv2_size), dtype=cp_weight.dtype, device=cp_weight.device)
cat_list = []
if left_zeros != None: cat_list.append(left_zeros)
cat_list.append(cp_weight.unsqueeze(2))
if right_zeros != None: cat_list.append(right_zeros)
cp_weight = torch.cat(cat_list, dim=2)
state_dict["clip.visual.conv2.weight"] = cp_weight
## <=== End of initialization trick
if state_dict is not None:
model = cls.init_preweight(model, state_dict)
return model
class CLIP4IDC(CLIP4IDCPreTrainedModel):
def __init__(self, cross_config, decoder_config, clip_state_dict):
super(CLIP4IDC, self).__init__(cross_config, decoder_config)
self.ignore_video_index = -1
# assert self.task_config.max_words <= cross_config.max_position_embeddings
# CLIP Encoders: From OpenAI: CLIP [https://github.com/openai/CLIP] ===>
vit = "visual.proj" in clip_state_dict
assert vit
if vit:
vision_width = clip_state_dict["visual.conv1.weight"].shape[0]
vision_layers = len(
[k for k in clip_state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
vision_patch_size = clip_state_dict["visual.conv1.weight"].shape[-1]
grid_size = round((clip_state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
image_resolution = vision_patch_size * grid_size
else:
counts: list = [len(set(k.split(".")[2] for k in clip_state_dict if k.startswith(f"visual.layer{b}"))) for b in
[1, 2, 3, 4]]
vision_layers = tuple(counts)
vision_width = clip_state_dict["visual.layer1.0.conv1.weight"].shape[0]
output_width = round((clip_state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
vision_patch_size = None
assert output_width ** 2 + 1 == clip_state_dict["visual.attnpool.positional_embedding"].shape[0]
image_resolution = output_width * 32
embed_dim = clip_state_dict["text_projection"].shape[1]
context_length = clip_state_dict["positional_embedding"].shape[0]
vocab_size = clip_state_dict["token_embedding.weight"].shape[0]
transformer_width = clip_state_dict["ln_final.weight"].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = len(set(k.split(".")[2] for k in clip_state_dict if k.startswith(f"transformer.resblocks")))
self.linear_patch = '2d'
# use .float() to avoid overflow/underflow from fp16 weight. https://github.com/openai/CLIP/issues/40
cut_top_layer = 0
self.clip = CLIP(
embed_dim,
image_resolution, vision_layers-cut_top_layer, vision_width, vision_patch_size,
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers-cut_top_layer,
linear_patch=self.linear_patch, intra_layers=9
).float()
bert_word_embeddings_weight = self.clip.token_embedding.weight
bert_position_embeddings_weight = self.clip.positional_embedding
for key in ["input_resolution", "context_length", "vocab_size"]:
if key in clip_state_dict:
del clip_state_dict[key]
convert_weights(self.clip)
# <=== End of CLIP Encoders
self.decoder = DecoderModel(decoder_config, bert_word_embeddings_weight, bert_position_embeddings_weight)
self.apply(self.init_weights)
def get_visual_output(self, video, visual_mask, left_gt_map, right_gt_map, shaped=False, video_frame=-1):
bs_pair = visual_mask.size(0)
visual_hidden, visual_output, left_map, right_map = self.clip.encode_image(video, left_gt_map, right_gt_map, video_frame=video_frame, return_hidden=True)
visual_hidden = visual_hidden.float()
visual_output = visual_output.float()
visual_hidden = visual_hidden.view(bs_pair, -1, visual_hidden.size(-1))
left_map = left_map.float()
right_map = right_map.float()
return visual_hidden, visual_output, left_map, right_map
def get_sequence_visual_output(self, video, visual_mask, left_gt_map, right_gt_map, shaped=False, video_frame=-1):
if shaped is False:
visual_mask = visual_mask.view(-1, visual_mask.shape[-1])
video = torch.as_tensor(video).float()
b, pair, channel, h, w = video.shape
video = video.view(b * pair, channel, h, w)
video_frame = pair
_, visual_hidden, left_map, right_map = self.get_visual_output(video, visual_mask, left_gt_map, right_gt_map, shaped=True, video_frame=video_frame)
return visual_hidden, left_map, right_map
def _get_decoder_score(self, visual_output, visual_mask, input_caption_ids, decoder_mask):
res_tuples = ()
decoder_scores = self.decoder(input_caption_ids, encoder_outs=visual_output, answer_mask=decoder_mask, encoder_mask=visual_mask)
return decoder_scores, res_tuples
def decoder_caption(self, visual_output, visual_mask, input_caption_ids, decoder_mask, get_logits=False):
decoder_scores, _ = self._get_decoder_score(visual_output, visual_mask,
input_caption_ids, decoder_mask)
if get_logits:
return decoder_scores
_, decoder_scores_result = torch.max(decoder_scores, -1)
return decoder_scores_result
def init_model(model_path, device):
model_state_dict = torch.load(model_path, map_location='cpu')
# Prepare model
cache_dir = ""
model = CLIP4IDC.from_pretrained("cross-base", "decoder-base", cache_dir=cache_dir, state_dict=model_state_dict)
model.to(device)
return model |