Spaces:
Running
Running
File size: 30,406 Bytes
ad4721b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 |
"""
Adapted from: https://github.com/openai/CLIP/blob/main/clip/clip.py
"""
import warnings
from collections import OrderedDict
from typing import Tuple, Union, Optional
import hashlib
import os
import urllib
import warnings
from tqdm import tqdm
import torch
import torch.nn.functional as F
from torch import Tensor
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
from torch.nn.init import xavier_uniform_
from torch.nn.init import constant_
from torch.nn.init import xavier_normal_
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
from .module_gated_attention import gated_coattention
from torch import nn
_MODELS = {
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
"RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
}
_PT_NAME = {
"RN50": "RN50.pt",
"RN101": "RN101.pt",
"RN50x4": "RN50x4.pt",
"RN50x16": "RN50x16.pt",
"ViT-B/32": "ViT-B-32.pt",
"ViT-B/16": "ViT-B-16.pt",
}
def _download(url: str, root: str = os.path.expanduser("~/.cache/clip")):
os.makedirs(root, exist_ok=True)
filename = os.path.basename(url)
expected_sha256 = url.split("/")[-2]
download_target = os.path.join(root, filename)
if os.path.exists(download_target) and not os.path.isfile(download_target):
raise RuntimeError(f"{download_target} exists and is not a regular file")
if os.path.isfile(download_target):
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
return download_target
else:
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop:
while True:
buffer = source.read(8192)
if not buffer:
break
output.write(buffer)
loop.update(len(buffer))
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")
return download_target
def available_models():
"""Returns the names of available CLIP models"""
return list(_MODELS.keys())
# =============================
class TABAttention(Module):
r"""Allows the model to jointly attend to information
from different representation subspaces.
See `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_
.. math::
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
Args:
embed_dim: total dimension of the model.
num_heads: parallel attention heads.
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
bias: add bias as module parameter. Default: True.
add_bias_kv: add bias to the key and value sequences at dim=0.
add_zero_attn: add a new batch of zeros to the key and
value sequences at dim=1.
kdim: total number of features in key. Default: None.
vdim: total number of features in value. Default: None.
Note that if :attr:`kdim` and :attr:`vdim` are None, they will be set
to :attr:`embed_dim` such that query, key, and value have the same
number of features.
Examples::
>>> multihead_attn = TABAttention(embed_dim, num_heads)
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
This is a version of multihead attention written to comply with the defintion of TAB!!!
"""
bias_k: Optional[torch.Tensor]
bias_v: Optional[torch.Tensor]
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None):
super(TABAttention, self).__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
if self._qkv_same_embed_dim is False:
self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim))
self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim))
self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim))
self.register_parameter('in_proj_weight', None)
else:
self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim))
self.register_parameter('q_proj_weight', None)
self.register_parameter('k_proj_weight', None)
self.register_parameter('v_proj_weight', None)
if bias:
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim))
else:
self.register_parameter('in_proj_bias', None)
self.out_proj = NonDynamicallyQuantizableLinear(embed_dim, embed_dim, bias)
if add_bias_kv:
self.bias_k = Parameter(torch.empty(1, 1, embed_dim))
self.bias_v = Parameter(torch.empty(1, 1, embed_dim))
else:
self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
self._reset_parameters()
def _reset_parameters(self):
if self._qkv_same_embed_dim:
xavier_uniform_(self.in_proj_weight)
else:
xavier_uniform_(self.q_proj_weight)
xavier_uniform_(self.k_proj_weight)
xavier_uniform_(self.v_proj_weight)
if self.in_proj_bias is not None:
constant_(self.in_proj_bias, 0.)
constant_(self.out_proj.bias, 0.)
if self.bias_k is not None:
xavier_normal_(self.bias_k)
if self.bias_v is not None:
xavier_normal_(self.bias_v)
def __setstate__(self, state):
# Support loading old TABAttention checkpoints generated by v1.1.0
if '_qkv_same_embed_dim' not in state:
state['_qkv_same_embed_dim'] = True
super(TABAttention, self).__setstate__(state)
def forward(self, query: Tensor, key: Tensor, value: Tensor, gt_attention_map: Optional[Tensor] = None, key_padding_mask: Optional[Tensor] = None,
need_weights: bool = True, attn_mask: Optional[Tensor] = None) -> Tuple[Tensor, Optional[Tensor]]:
r"""
Args:
query, key, value: map a query and a set of key-value pairs to an output.
See "Attention Is All You Need" for more details.
key_padding_mask: if provided, specified padding elements in the key will
be ignored by the attention. When given a binary mask and a value is True,
the corresponding value on the attention layer will be ignored. When given
a byte mask and a value is non-zero, the corresponding value on the attention
layer will be ignored
need_weights: output attn_output_weights.
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
Shapes for inputs:
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
the embedding dimension.
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
If a ByteTensor is provided, the non-zero positions will be ignored while the position
with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
- attn_mask: if a 2D mask: :math:`(L, S)` where L is the target sequence length, S is the
source sequence length.
If a 3D mask: :math:`(N\cdot\text{num\_heads}, L, S)` where N is the batch size, L is the target sequence
length, S is the source sequence length. ``attn_mask`` ensure that position i is allowed to attend
the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
is provided, it will be added to the attention weight.
Shapes for outputs:
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
E is the embedding dimension.
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
L is the target sequence length, S is the source sequence length.
"""
if not self._qkv_same_embed_dim:
return gated_coattention(
query, key, value, self.embed_dim, self.num_heads,
self.in_proj_weight.half(), self.in_proj_bias.half(),
self.bias_k, self.bias_v, self.add_zero_attn,
self.dropout, self.out_proj.weight.half(), self.out_proj.bias.half(),
training=self.training, gt_attention_map=gt_attention_map,
key_padding_mask=key_padding_mask, need_weights=need_weights,
attn_mask=attn_mask, use_separate_proj_weight=True,
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
v_proj_weight=self.v_proj_weight)
else:
return gated_coattention(
query, key, value, self.embed_dim, self.num_heads,
self.in_proj_weight.half(), self.in_proj_bias.half(),
self.bias_k, self.bias_v, self.add_zero_attn,
self.dropout, self.out_proj.weight.half(), self.out_proj.bias.half(),
training=self.training, gt_attention_map=gt_attention_map,
key_padding_mask=key_padding_mask, need_weights=need_weights,
attn_mask=attn_mask)
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask=None):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
def attention(self, x: torch.Tensor):
attn_mask_ = self.attn_mask
if self.attn_mask is not None and hasattr(self.attn_mask, '__call__'):
attn_mask_ = self.attn_mask(x.size(0)) # LND
attn_mask_ = attn_mask_.to(dtype=x.dtype, device=x.device) if attn_mask_ is not None else None
return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask_)[0]
def forward(self, x_tuple:tuple):
x, video_frame = x_tuple
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return (x, video_frame)
def visualize_attention(self, x: torch.Tensor):
attn_outputs, attn_weights = self.attn(x, x, x, need_weights=True, attn_mask=None)
return attn_outputs, attn_weights
def visualize_forward(self, x_tuple:tuple):
x, video_frame = x_tuple
attn_outputs, attn_weights = self.visualize_attention(self.ln_1(x))
x = x + attn_outputs
x = x + self.mlp(self.ln_2(x))
return (x, video_frame, attn_weights)
class TABLayer(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask=None):
super().__init__()
self.attn = TABAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
def attention(self, x: torch.Tensor, y: torch.Tensor):
attn_mask_ = self.attn_mask
if self.attn_mask is not None and hasattr(self.attn_mask, '__call__'):
attn_mask_ = self.attn_mask(x.size(0)) # LND
attn_mask_ = attn_mask_.to(dtype=x.dtype, device=x.device) if attn_mask_ is not None else None
return self.attn(x, y, y, need_weights=False, attn_mask=attn_mask_)[0]
def forward(self, x: torch.Tensor, y: torch.Tensor):
x = self.attention(self.ln_1(x), self.ln_1(y))
x = x + self.mlp(self.ln_2(x))
return x
def visualize_attention(self, x: torch.Tensor, y: torch.Tensor, gt_attention_map):
attn_outputs, attn_weights = self.attn(x, y, y, gt_attention_map=gt_attention_map, need_weights=True, attn_mask=None)
return attn_outputs, attn_weights
def visualize_forward(self, x: torch.Tensor, y: torch.Tensor, gt_attention_map):
attn_outputs, attn_weights = self.visualize_attention(self.ln_1(x), self.ln_1(y), gt_attention_map)
x = attn_outputs
x = x + self.mlp(self.ln_2(x))
return (x, attn_weights)
class visionTransformer(nn.Module):
def __init__(self, width: int, layers: int, heads: int, attn_mask = None):
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) if i < (layers - 1) else TABLayer(width, 1, attn_mask) for i in range(layers)])
def forward(self, x: torch.Tensor, video_frame=-1):
return self.resblocks((x, video_frame))[0]
class Transformer(nn.Module):
def __init__(self, width: int, layers: int, heads: int, attn_mask = None):
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
def forward(self, x: torch.Tensor, video_frame=-1):
return self.resblocks((x, video_frame))[0]
class VisualTransformer(nn.Module):
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int,
linear_patch: str = '2d', intra_layers: int = 9):
super().__init__()
self.input_resolution = input_resolution
self.output_dim = output_dim
self.intra_layers = intra_layers
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
scale = width ** -0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
self.ln_pre = LayerNorm(width)
self.joint_positional_embedding = nn.Parameter(scale * torch.randn(2 * ((input_resolution // patch_size) ** 2 + 1), width))
self.bef_embedding = nn.Parameter(scale * torch.randn(width))
self.aft_embedding = nn.Parameter(scale * torch.randn(width))
self.ln_mid = LayerNorm(width)
self.transformer = visionTransformer(width, layers, heads)
self.ln_post = LayerNorm(width)
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
# For 3D
assert linear_patch in ['2d', '3d']
self.linear_patch = linear_patch
if self.linear_patch == '3d':
self.conv2 = nn.Conv3d(in_channels=3, out_channels=width, kernel_size=(3, patch_size, patch_size),
stride=(1, patch_size, patch_size), padding=(1, 0, 0), bias=False)
def forward(self, x: torch.Tensor, left_gt_map, right_gt_map, video_frame=-1, visualize=False):
if self.linear_patch == '3d':
assert video_frame != -1
x_3d = x.reshape(-1, video_frame, x.shape[-3], x.shape[-2], x.shape[-1])
x_3d = x_3d.permute(0, 2, 1, 3, 4)
x_3d = self.conv2(x_3d) # shape = [*, width, frame, grid, grid]
x_3d = x_3d.permute(0, 2, 1, 3, 4) # shape = [*, frame, width, grid, grid]
x = x_3d.reshape(-1, x_3d.shape[-3], x_3d.shape[-2], x_3d.shape[-1]).contiguous() # shape = [*, width, grid, grid]
else:
x = self.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
if visualize is True:
all_attn_weights = []
for i in range(self.intra_layers):
x, _, attn_weights = self.transformer.resblocks[i].visualize_forward((x, video_frame))
attn_weights = attn_weights.view(x.size(1) // video_frame, -1, attn_weights.size(-2),
attn_weights.size(-1))
all_attn_weights.append(attn_weights)
else:
for i in range(self.intra_layers):
x = self.transformer.resblocks[i]((x, video_frame))[0]
x = x.permute(1, 0, 2) # LND -> NLD
bs = x.size(0) // video_frame
x = x.view(bs, video_frame, x.size(-2), x.size(-1))
x = torch.cat([x[:, 0] + self.bef_embedding.to(x.dtype),
x[:, 1] + self.aft_embedding.to(x.dtype)], dim=1)
x = x + self.joint_positional_embedding.to(x.dtype)
x = self.ln_mid(x)
x = x.permute(1, 0, 2) # NLD -> LND
if visualize is True:
for i in range(self.intra_layers, self.transformer.layers - 1):
x, _, attn_weights = self.transformer.resblocks[i].visualize_forward((x, video_frame))
all_attn_weights.append(attn_weights)
cls_index = int(x.size(0) / 2)
left_features, left_attn_weights = self.transformer.resblocks[-1].visualize_forward(x[:cls_index, :, :], x[cls_index:, :, :], right_gt_map)
right_features, right_attn_weights = self.transformer.resblocks[-1].visualize_forward(x[cls_index:, :, :], x[:cls_index, :, :], left_gt_map)
all_attn_weights.append(left_attn_weights)
all_attn_weights.append(right_attn_weights)
else:
for i in range(self.intra_layers, self.transformer.layers - 1):
x = self.transformer.resblocks[i]((x, video_frame))[0]
cls_index = int(x.size(0) / 2)
left_features, left_attn_weights = self.transformer.resblocks[-1].visualize_forward(x[:cls_index, :, :], x[cls_index:, :, :], right_gt_map)
right_features, right_attn_weights = self.transformer.resblocks[-1].visualize_forward(x[cls_index:, :, :], x[:cls_index, :, :], left_gt_map)
left_features = left_features.permute(1, 0, 2) # LND -> NLD
right_features = right_features.permute(1, 0, 2) # LND -> NLD
x = torch.cat([left_features, right_features], 1)
# Move the three lines below to `encode_image` for entire hidden sequence
# x = self.ln_post(x[:, 0, :])
# if self.proj is not None:
# x = x @ self.proj
if visualize is True:
return x, all_attn_weights
return x, left_attn_weights, right_attn_weights
class CLIP(nn.Module):
def __init__(self,
embed_dim: int,
# vision
image_resolution: int,
vision_layers: Union[Tuple[int, int, int, int], int],
vision_width: int,
vision_patch_size: int,
# text
context_length: int,
vocab_size: int,
transformer_width: int,
transformer_heads: int,
transformer_layers: int,
# vision linear of patch
linear_patch: str = '2d',
intra_layers: int = 9,
):
super().__init__()
self.context_length = context_length
vision_heads = vision_width // 64
self.visual = VisualTransformer(
input_resolution=image_resolution,
patch_size=vision_patch_size,
width=vision_width,
layers=vision_layers,
heads=vision_heads,
output_dim=embed_dim,
linear_patch=linear_patch,
intra_layers=intra_layers,
)
self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask
)
self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
self.ln_final = LayerNorm(transformer_width)
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
self.logit_scale = nn.Parameter(torch.ones([]))
self.initialize_parameters()
def initialize_parameters(self):
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.positional_embedding, std=0.01)
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
attn_std = self.transformer.width ** -0.5
fc_std = (2 * self.transformer.width) ** -0.5
for block in self.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
if self.text_projection is not None:
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
@staticmethod
def get_config(pretrained_clip_name="ViT-B/32"):
model_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "ViT-B-32.pt")
if pretrained_clip_name in _MODELS and pretrained_clip_name in _PT_NAME:
model_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), _PT_NAME[pretrained_clip_name])
if pretrained_clip_name in ["ViT-B/32", "ViT-B/16"] and os.path.exists(model_path):
pass
else:
if pretrained_clip_name in _MODELS:
model_path = _download(_MODELS[pretrained_clip_name])
elif os.path.isfile(pretrained_clip_name):
model_path = pretrained_clip_name
else:
raise RuntimeError(f"Model {pretrained_clip_name} not found; available models = {available_models()}")
try:
# loading JIT archive
model = torch.jit.load(model_path, map_location="cpu").eval()
state_dict = model.state_dict()
except RuntimeError:
state_dict = torch.load(model_path, map_location="cpu")
return state_dict
def build_attention_mask(self, context_length):
# lazily create causal attention mask, with full attention between the vision tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.zeros(context_length, context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
@property
def dtype(self):
return self.visual.conv1.weight.dtype
def encode_image(self, image, left_gt_map, right_gt_map, return_hidden=False, video_frame=-1):
hidden, left_map, right_map = self.visual(image.type(self.dtype), left_gt_map, right_gt_map, video_frame=video_frame)
hidden = self.visual.ln_post(hidden) @ self.visual.proj
cls_index = int(hidden.size(1) / 2)
hidden2 = torch.cat([hidden[:, 0, :].unsqueeze(1), hidden[:, cls_index, :].unsqueeze(1)], 1)
x = torch.mean(hidden2, 1)
if return_hidden:
return x, hidden2, left_map, right_map
return x, left_map, right_map
def encode_text(self, text, return_hidden=False):
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
pos_emd = self.positional_embedding[:x.size(1), :].type(self.dtype)
x = x + pos_emd
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
hidden = self.ln_final(x).type(self.dtype) @ self.text_projection
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = hidden[torch.arange(hidden.shape[0]), text.argmax(dim=-1)]
if return_hidden:
return x, hidden
return x
def forward(self, image, text):
image_features = self.encode_image(image)
text_features = self.encode_text(text)
# normalized features
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_image = logit_scale * image_features @ text_features.t()
logits_per_text = logit_scale * text_features @ image_features.t()
# shape = [global_batch_size, global_batch_size]
return logits_per_image, logits_per_text
def convert_weights(model: nn.Module):
"""Convert applicable model parameters to fp16"""
def _convert_weights_to_fp16(l):
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d, nn.Linear)):
l.weight.data = l.weight.data.half()
if l.bias is not None:
l.bias.data = l.bias.data.half()
if isinstance(l, nn.MultiheadAttention):
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
tensor = getattr(l, attr)
if tensor is not None:
tensor.data = tensor.data.half()
for name in ["text_projection", "proj"]:
if hasattr(l, name):
attr = getattr(l, name)
if attr is not None:
attr.data = attr.data.half()
model.apply(_convert_weights_to_fp16)
def build_model(state_dict: dict):
vit = "visual.proj" in state_dict
if vit:
vision_width = state_dict["visual.conv1.weight"].shape[0]
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
image_resolution = vision_patch_size * grid_size
else:
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
vision_layers = tuple(counts)
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
vision_patch_size = None
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
image_resolution = output_width * 32
embed_dim = state_dict["text_projection"].shape[1]
context_length = state_dict["positional_embedding"].shape[0]
vocab_size = state_dict["token_embedding.weight"].shape[0]
transformer_width = state_dict["ln_final.weight"].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
model = CLIP(
embed_dim,
image_resolution, vision_layers, vision_width, vision_patch_size,
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
)
for key in ["input_resolution", "context_length", "vocab_size"]:
if key in state_dict:
del state_dict[key]
convert_weights(model)
model.load_state_dict(state_dict)
return model.eval()
|