File size: 30,406 Bytes
ad4721b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
"""
Adapted from: https://github.com/openai/CLIP/blob/main/clip/clip.py
"""
import warnings
from collections import OrderedDict
from typing import Tuple, Union, Optional

import hashlib
import os
import urllib
import warnings
from tqdm import tqdm

import torch
import torch.nn.functional as F

from torch import Tensor
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
from torch.nn.init import xavier_uniform_
from torch.nn.init import constant_
from torch.nn.init import xavier_normal_
from torch.nn.parameter import Parameter

from torch.nn.modules.module import Module
from .module_gated_attention import gated_coattention
from torch import nn


_MODELS = {
    "RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
    "RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
    "RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
    "RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
    "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
    "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
}
_PT_NAME = {
    "RN50": "RN50.pt",
    "RN101": "RN101.pt",
    "RN50x4": "RN50x4.pt",
    "RN50x16": "RN50x16.pt",
    "ViT-B/32": "ViT-B-32.pt",
    "ViT-B/16": "ViT-B-16.pt",
}

def _download(url: str, root: str = os.path.expanduser("~/.cache/clip")):
    os.makedirs(root, exist_ok=True)
    filename = os.path.basename(url)

    expected_sha256 = url.split("/")[-2]
    download_target = os.path.join(root, filename)

    if os.path.exists(download_target) and not os.path.isfile(download_target):
        raise RuntimeError(f"{download_target} exists and is not a regular file")

    if os.path.isfile(download_target):
        if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
            return download_target
        else:
            warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")

    with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
        with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop:
            while True:
                buffer = source.read(8192)
                if not buffer:
                    break

                output.write(buffer)
                loop.update(len(buffer))

    if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
        raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")

    return download_target

def available_models():
    """Returns the names of available CLIP models"""
    return list(_MODELS.keys())

# =============================


class TABAttention(Module):
    r"""Allows the model to jointly attend to information
    from different representation subspaces.
    See `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_

    .. math::
        \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O

    where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.

    Args:
        embed_dim: total dimension of the model.
        num_heads: parallel attention heads.
        dropout: a Dropout layer on attn_output_weights. Default: 0.0.
        bias: add bias as module parameter. Default: True.
        add_bias_kv: add bias to the key and value sequences at dim=0.
        add_zero_attn: add a new batch of zeros to the key and
                       value sequences at dim=1.
        kdim: total number of features in key. Default: None.
        vdim: total number of features in value. Default: None.

    Note that if :attr:`kdim` and :attr:`vdim` are None, they will be set
    to :attr:`embed_dim` such that query, key, and value have the same
    number of features.

    Examples::

        >>> multihead_attn = TABAttention(embed_dim, num_heads)
        >>> attn_output, attn_output_weights = multihead_attn(query, key, value)



    This is a version of multihead attention written to comply with the defintion of TAB!!!
    """
    bias_k: Optional[torch.Tensor]
    bias_v: Optional[torch.Tensor]

    def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None):
        super(TABAttention, self).__init__()
        self.embed_dim = embed_dim
        self.kdim = kdim if kdim is not None else embed_dim
        self.vdim = vdim if vdim is not None else embed_dim
        self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim

        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
        assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"

        if self._qkv_same_embed_dim is False:
            self.q_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim))
            self.k_proj_weight = Parameter(torch.Tensor(embed_dim, self.kdim))
            self.v_proj_weight = Parameter(torch.Tensor(embed_dim, self.vdim))
            self.register_parameter('in_proj_weight', None)
        else:
            self.in_proj_weight = Parameter(torch.empty(3 * embed_dim, embed_dim))
            self.register_parameter('q_proj_weight', None)
            self.register_parameter('k_proj_weight', None)
            self.register_parameter('v_proj_weight', None)

        if bias:
            self.in_proj_bias = Parameter(torch.empty(3 * embed_dim))
        else:
            self.register_parameter('in_proj_bias', None)
        self.out_proj = NonDynamicallyQuantizableLinear(embed_dim, embed_dim, bias)

        if add_bias_kv:
            self.bias_k = Parameter(torch.empty(1, 1, embed_dim))
            self.bias_v = Parameter(torch.empty(1, 1, embed_dim))
        else:
            self.bias_k = self.bias_v = None

        self.add_zero_attn = add_zero_attn

        self._reset_parameters()

    def _reset_parameters(self):
        if self._qkv_same_embed_dim:
            xavier_uniform_(self.in_proj_weight)
        else:
            xavier_uniform_(self.q_proj_weight)
            xavier_uniform_(self.k_proj_weight)
            xavier_uniform_(self.v_proj_weight)

        if self.in_proj_bias is not None:
            constant_(self.in_proj_bias, 0.)
            constant_(self.out_proj.bias, 0.)
        if self.bias_k is not None:
            xavier_normal_(self.bias_k)
        if self.bias_v is not None:
            xavier_normal_(self.bias_v)

    def __setstate__(self, state):
        # Support loading old TABAttention checkpoints generated by v1.1.0
        if '_qkv_same_embed_dim' not in state:
            state['_qkv_same_embed_dim'] = True

        super(TABAttention, self).__setstate__(state)

    def forward(self, query: Tensor, key: Tensor, value: Tensor, gt_attention_map: Optional[Tensor] = None, key_padding_mask: Optional[Tensor] = None,
                need_weights: bool = True, attn_mask: Optional[Tensor] = None) -> Tuple[Tensor, Optional[Tensor]]:
        r"""
    Args:
        query, key, value: map a query and a set of key-value pairs to an output.
            See "Attention Is All You Need" for more details.
        key_padding_mask: if provided, specified padding elements in the key will
            be ignored by the attention. When given a binary mask and a value is True,
            the corresponding value on the attention layer will be ignored. When given
            a byte mask and a value is non-zero, the corresponding value on the attention
            layer will be ignored
        need_weights: output attn_output_weights.
        attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
            the batches while a 3D mask allows to specify a different mask for the entries of each batch.

    Shapes for inputs:
        - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
          the embedding dimension.
        - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
          the embedding dimension.
        - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
          the embedding dimension.
        - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
          If a ByteTensor is provided, the non-zero positions will be ignored while the position
          with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
          value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
        - attn_mask: if a 2D mask: :math:`(L, S)` where L is the target sequence length, S is the
          source sequence length.

          If a 3D mask: :math:`(N\cdot\text{num\_heads}, L, S)` where N is the batch size, L is the target sequence
          length, S is the source sequence length. ``attn_mask`` ensure that position i is allowed to attend
          the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
          while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
          is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
          is provided, it will be added to the attention weight.

    Shapes for outputs:
        - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
          E is the embedding dimension.
        - attn_output_weights: :math:`(N, L, S)` where N is the batch size,
          L is the target sequence length, S is the source sequence length.
        """
        if not self._qkv_same_embed_dim:
            return gated_coattention(
                query, key, value, self.embed_dim, self.num_heads,
                self.in_proj_weight.half(), self.in_proj_bias.half(),
                self.bias_k, self.bias_v, self.add_zero_attn,
                self.dropout, self.out_proj.weight.half(), self.out_proj.bias.half(),
                training=self.training, gt_attention_map=gt_attention_map,
                key_padding_mask=key_padding_mask, need_weights=need_weights,
                attn_mask=attn_mask, use_separate_proj_weight=True,
                q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
                v_proj_weight=self.v_proj_weight)
        else:
            return gated_coattention(
                query, key, value, self.embed_dim, self.num_heads,
                self.in_proj_weight.half(), self.in_proj_bias.half(),
                self.bias_k, self.bias_v, self.add_zero_attn,
                self.dropout, self.out_proj.weight.half(), self.out_proj.bias.half(),
                training=self.training, gt_attention_map=gt_attention_map,
                key_padding_mask=key_padding_mask, need_weights=need_weights,
                attn_mask=attn_mask)


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16."""

    def forward(self, x: torch.Tensor):
        orig_type = x.dtype
        ret = super().forward(x.type(torch.float32))
        return ret.type(orig_type)


class QuickGELU(nn.Module):
    def forward(self, x: torch.Tensor):
        return x * torch.sigmoid(1.702 * x)


class ResidualAttentionBlock(nn.Module):
    def __init__(self, d_model: int, n_head: int, attn_mask=None):
        super().__init__()

        self.attn = nn.MultiheadAttention(d_model, n_head)
        self.ln_1 = LayerNorm(d_model)
        self.mlp = nn.Sequential(OrderedDict([
            ("c_fc", nn.Linear(d_model, d_model * 4)),
            ("gelu", QuickGELU()),
            ("c_proj", nn.Linear(d_model * 4, d_model))
        ]))
        self.ln_2 = LayerNorm(d_model)
        self.attn_mask = attn_mask

    def attention(self, x: torch.Tensor):
        attn_mask_ = self.attn_mask
        if self.attn_mask is not None and hasattr(self.attn_mask, '__call__'):
            attn_mask_ = self.attn_mask(x.size(0))   # LND

        attn_mask_ = attn_mask_.to(dtype=x.dtype, device=x.device) if attn_mask_ is not None else None
        return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask_)[0]

    def forward(self, x_tuple:tuple):
        x, video_frame = x_tuple
        x = x + self.attention(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return (x, video_frame)
    
    def visualize_attention(self, x: torch.Tensor):
        attn_outputs, attn_weights = self.attn(x, x, x, need_weights=True, attn_mask=None)
        return attn_outputs, attn_weights
    
    def visualize_forward(self, x_tuple:tuple):
        x, video_frame = x_tuple
        attn_outputs, attn_weights = self.visualize_attention(self.ln_1(x))
        x = x + attn_outputs
        x = x + self.mlp(self.ln_2(x))
        return (x, video_frame, attn_weights)

class TABLayer(nn.Module):
    def __init__(self, d_model: int, n_head: int, attn_mask=None):
        super().__init__()

        self.attn = TABAttention(d_model, n_head)
        self.ln_1 = LayerNorm(d_model)
        self.mlp = nn.Sequential(OrderedDict([
            ("c_fc", nn.Linear(d_model, d_model * 4)),
            ("gelu", QuickGELU()),
            ("c_proj", nn.Linear(d_model * 4, d_model))
        ]))
        self.ln_2 = LayerNorm(d_model)
        self.attn_mask = attn_mask

    def attention(self, x: torch.Tensor, y: torch.Tensor):
        attn_mask_ = self.attn_mask
        if self.attn_mask is not None and hasattr(self.attn_mask, '__call__'):
            attn_mask_ = self.attn_mask(x.size(0))   # LND

        attn_mask_ = attn_mask_.to(dtype=x.dtype, device=x.device) if attn_mask_ is not None else None
        return self.attn(x, y, y, need_weights=False, attn_mask=attn_mask_)[0]

    def forward(self, x: torch.Tensor, y: torch.Tensor):
        x = self.attention(self.ln_1(x), self.ln_1(y))
        x = x + self.mlp(self.ln_2(x))
        return x
    
    def visualize_attention(self, x: torch.Tensor, y: torch.Tensor, gt_attention_map):
        attn_outputs, attn_weights = self.attn(x, y, y, gt_attention_map=gt_attention_map, need_weights=True, attn_mask=None)
        return attn_outputs, attn_weights
    
    def visualize_forward(self, x: torch.Tensor, y: torch.Tensor, gt_attention_map):
        attn_outputs, attn_weights = self.visualize_attention(self.ln_1(x), self.ln_1(y), gt_attention_map)
        x = attn_outputs
        x = x + self.mlp(self.ln_2(x))
        return (x, attn_weights)

class visionTransformer(nn.Module):
    def __init__(self, width: int, layers: int, heads: int, attn_mask = None):
        super().__init__()
        self.width = width
        self.layers = layers
        self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) if i < (layers - 1) else TABLayer(width, 1, attn_mask) for i in range(layers)])

    def forward(self, x: torch.Tensor, video_frame=-1):
        return self.resblocks((x, video_frame))[0]
    
class Transformer(nn.Module):
    def __init__(self, width: int, layers: int, heads: int, attn_mask = None):
        super().__init__()
        self.width = width
        self.layers = layers
        self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])

    def forward(self, x: torch.Tensor, video_frame=-1):
        return self.resblocks((x, video_frame))[0]


class VisualTransformer(nn.Module):
    def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int,
                 linear_patch: str = '2d', intra_layers: int = 9):
        super().__init__()
        self.input_resolution = input_resolution
        self.output_dim = output_dim
        self.intra_layers = intra_layers

        self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)

        scale = width ** -0.5
        self.class_embedding = nn.Parameter(scale * torch.randn(width))
        self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
        self.ln_pre = LayerNorm(width)

        self.joint_positional_embedding = nn.Parameter(scale * torch.randn(2 * ((input_resolution // patch_size) ** 2 + 1), width))
        self.bef_embedding = nn.Parameter(scale * torch.randn(width))
        self.aft_embedding = nn.Parameter(scale * torch.randn(width))
        self.ln_mid = LayerNorm(width)

        self.transformer = visionTransformer(width, layers, heads)

        self.ln_post = LayerNorm(width)
        self.proj = nn.Parameter(scale * torch.randn(width, output_dim))

        # For 3D
        assert linear_patch in ['2d', '3d']
        self.linear_patch = linear_patch
        if self.linear_patch == '3d':
            self.conv2 = nn.Conv3d(in_channels=3, out_channels=width, kernel_size=(3, patch_size, patch_size),
                                   stride=(1, patch_size, patch_size), padding=(1, 0, 0), bias=False)

    def forward(self, x: torch.Tensor, left_gt_map, right_gt_map, video_frame=-1, visualize=False):

        if self.linear_patch == '3d':
            assert video_frame != -1
            x_3d = x.reshape(-1, video_frame, x.shape[-3], x.shape[-2], x.shape[-1])
            x_3d = x_3d.permute(0, 2, 1, 3, 4)
            x_3d = self.conv2(x_3d)     # shape = [*, width, frame, grid, grid]
            x_3d = x_3d.permute(0, 2, 1, 3, 4)      # shape = [*, frame, width, grid, grid]
            x = x_3d.reshape(-1, x_3d.shape[-3], x_3d.shape[-2], x_3d.shape[-1]).contiguous() # shape = [*, width, grid, grid]
        else:
            x = self.conv1(x)  # shape = [*, width, grid, grid]

        x = x.reshape(x.shape[0], x.shape[1], -1)  # shape = [*, width, grid ** 2]
        x = x.permute(0, 2, 1)  # shape = [*, grid ** 2, width]

        x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1)  # shape = [*, grid ** 2 + 1, width]
        x = x + self.positional_embedding.to(x.dtype)
        x = self.ln_pre(x)

        x = x.permute(1, 0, 2)  # NLD -> LND
        
        if visualize is True:
            all_attn_weights = []
            for i in range(self.intra_layers):
                x, _, attn_weights = self.transformer.resblocks[i].visualize_forward((x, video_frame))
                attn_weights = attn_weights.view(x.size(1) // video_frame, -1, attn_weights.size(-2),
                                                 attn_weights.size(-1))
                all_attn_weights.append(attn_weights)
        else:
            for i in range(self.intra_layers):
                x = self.transformer.resblocks[i]((x, video_frame))[0]
        x = x.permute(1, 0, 2)  # LND -> NLD

        bs = x.size(0) // video_frame
        x = x.view(bs, video_frame, x.size(-2), x.size(-1))
        x = torch.cat([x[:, 0] + self.bef_embedding.to(x.dtype),
                       x[:, 1] + self.aft_embedding.to(x.dtype)], dim=1)

        x = x + self.joint_positional_embedding.to(x.dtype)
        x = self.ln_mid(x)

        x = x.permute(1, 0, 2)  # NLD -> LND
        
        if visualize is True:
            for i in range(self.intra_layers, self.transformer.layers - 1):
                x, _, attn_weights = self.transformer.resblocks[i].visualize_forward((x, video_frame))
                all_attn_weights.append(attn_weights)
            cls_index = int(x.size(0) / 2)
            left_features, left_attn_weights = self.transformer.resblocks[-1].visualize_forward(x[:cls_index, :, :], x[cls_index:, :, :], right_gt_map)
            right_features, right_attn_weights = self.transformer.resblocks[-1].visualize_forward(x[cls_index:, :, :], x[:cls_index, :, :], left_gt_map)
            
            all_attn_weights.append(left_attn_weights)
            all_attn_weights.append(right_attn_weights)
        else:
            for i in range(self.intra_layers, self.transformer.layers - 1):
                x = self.transformer.resblocks[i]((x, video_frame))[0]
            cls_index = int(x.size(0) / 2)
            left_features, left_attn_weights = self.transformer.resblocks[-1].visualize_forward(x[:cls_index, :, :], x[cls_index:, :, :], right_gt_map)
            right_features, right_attn_weights = self.transformer.resblocks[-1].visualize_forward(x[cls_index:, :, :], x[:cls_index, :, :], left_gt_map)
        
        left_features = left_features.permute(1, 0, 2)  # LND -> NLD
        right_features = right_features.permute(1, 0, 2)  # LND -> NLD
        x = torch.cat([left_features, right_features], 1)

        # Move the three lines below to `encode_image` for entire hidden sequence
        # x = self.ln_post(x[:, 0, :])
        # if self.proj is not None:
        #     x = x @ self.proj
        
        if visualize is True:
            return x, all_attn_weights
        return x, left_attn_weights, right_attn_weights


class CLIP(nn.Module):
    def __init__(self,
                 embed_dim: int,
                 # vision
                 image_resolution: int,
                 vision_layers: Union[Tuple[int, int, int, int], int],
                 vision_width: int,
                 vision_patch_size: int,
                 # text
                 context_length: int,
                 vocab_size: int,
                 transformer_width: int,
                 transformer_heads: int,
                 transformer_layers: int,
                 # vision linear of patch
                 linear_patch: str = '2d',
                 intra_layers: int = 9,
                 ):
        super().__init__()

        self.context_length = context_length
        
        vision_heads = vision_width // 64
        self.visual = VisualTransformer(
            input_resolution=image_resolution,
            patch_size=vision_patch_size,
            width=vision_width,
            layers=vision_layers,
            heads=vision_heads,
            output_dim=embed_dim,
            linear_patch=linear_patch,
            intra_layers=intra_layers,
        )

        self.transformer = Transformer(
            width=transformer_width,
            layers=transformer_layers,
            heads=transformer_heads,
            attn_mask=self.build_attention_mask
        )

        self.vocab_size = vocab_size
        self.token_embedding = nn.Embedding(vocab_size, transformer_width)
        self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
        self.ln_final = LayerNorm(transformer_width)

        self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
        self.logit_scale = nn.Parameter(torch.ones([]))

        self.initialize_parameters()

    def initialize_parameters(self):
        nn.init.normal_(self.token_embedding.weight, std=0.02)
        nn.init.normal_(self.positional_embedding, std=0.01)

        proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
        attn_std = self.transformer.width ** -0.5
        fc_std = (2 * self.transformer.width) ** -0.5
        for block in self.transformer.resblocks:
            nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
            nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
            nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
            nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)

        if self.text_projection is not None:
            nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)

    @staticmethod
    def get_config(pretrained_clip_name="ViT-B/32"):
        model_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "ViT-B-32.pt")
        if pretrained_clip_name in _MODELS and pretrained_clip_name in _PT_NAME:
            model_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), _PT_NAME[pretrained_clip_name])

        if pretrained_clip_name in ["ViT-B/32", "ViT-B/16"] and os.path.exists(model_path):
            pass
        else:
            if pretrained_clip_name in _MODELS:
                model_path = _download(_MODELS[pretrained_clip_name])
            elif os.path.isfile(pretrained_clip_name):
                model_path = pretrained_clip_name
            else:
                raise RuntimeError(f"Model {pretrained_clip_name} not found; available models = {available_models()}")

        try:
            # loading JIT archive
            model = torch.jit.load(model_path, map_location="cpu").eval()
            state_dict = model.state_dict()
        except RuntimeError:
            state_dict = torch.load(model_path, map_location="cpu")

        return state_dict

    def build_attention_mask(self, context_length):
        # lazily create causal attention mask, with full attention between the vision tokens
        # pytorch uses additive attention mask; fill with -inf
        mask = torch.zeros(context_length, context_length)
        mask.fill_(float("-inf"))
        mask.triu_(1)  # zero out the lower diagonal
        return mask

    @property
    def dtype(self):
        return self.visual.conv1.weight.dtype

    def encode_image(self, image, left_gt_map, right_gt_map, return_hidden=False, video_frame=-1):
        hidden, left_map, right_map = self.visual(image.type(self.dtype), left_gt_map, right_gt_map, video_frame=video_frame)
        hidden = self.visual.ln_post(hidden) @ self.visual.proj

        cls_index = int(hidden.size(1) / 2)
        hidden2 = torch.cat([hidden[:, 0, :].unsqueeze(1), hidden[:, cls_index, :].unsqueeze(1)], 1)
        x = torch.mean(hidden2, 1)

        if return_hidden:
            return x, hidden2, left_map, right_map

        return x, left_map, right_map

    def encode_text(self, text, return_hidden=False):
        x = self.token_embedding(text).type(self.dtype)  # [batch_size, n_ctx, d_model]

        pos_emd = self.positional_embedding[:x.size(1), :].type(self.dtype)
        x = x + pos_emd
        x = x.permute(1, 0, 2)  # NLD -> LND
        x = self.transformer(x)
        x = x.permute(1, 0, 2)  # LND -> NLD

        hidden = self.ln_final(x).type(self.dtype) @ self.text_projection

        # x.shape = [batch_size, n_ctx, transformer.width]
        # take features from the eot embedding (eot_token is the highest number in each sequence)
        x = hidden[torch.arange(hidden.shape[0]), text.argmax(dim=-1)]
        
        if return_hidden:
            return x, hidden

        return x

    def forward(self, image, text):
        image_features = self.encode_image(image)
        text_features = self.encode_text(text)

        # normalized features
        image_features = image_features / image_features.norm(dim=-1, keepdim=True)
        text_features = text_features / text_features.norm(dim=-1, keepdim=True)

        # cosine similarity as logits
        logit_scale = self.logit_scale.exp()
        logits_per_image = logit_scale * image_features @ text_features.t()
        logits_per_text = logit_scale * text_features @ image_features.t()

        # shape = [global_batch_size, global_batch_size]
        return logits_per_image, logits_per_text


def convert_weights(model: nn.Module):
    """Convert applicable model parameters to fp16"""

    def _convert_weights_to_fp16(l):
        if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d, nn.Linear)):
            l.weight.data = l.weight.data.half()
            if l.bias is not None:
                l.bias.data = l.bias.data.half()

        if isinstance(l, nn.MultiheadAttention):
            for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
                tensor = getattr(l, attr)
                if tensor is not None:
                    tensor.data = tensor.data.half()

        for name in ["text_projection", "proj"]:
            if hasattr(l, name):
                attr = getattr(l, name)
                if attr is not None:
                    attr.data = attr.data.half()

    model.apply(_convert_weights_to_fp16)


def build_model(state_dict: dict):
    vit = "visual.proj" in state_dict

    if vit:
        vision_width = state_dict["visual.conv1.weight"].shape[0]
        vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
        vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
        grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
        image_resolution = vision_patch_size * grid_size
    else:
        counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
        vision_layers = tuple(counts)
        vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
        output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
        vision_patch_size = None
        assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
        image_resolution = output_width * 32

    embed_dim = state_dict["text_projection"].shape[1]
    context_length = state_dict["positional_embedding"].shape[0]
    vocab_size = state_dict["token_embedding.weight"].shape[0]
    transformer_width = state_dict["ln_final.weight"].shape[0]
    transformer_heads = transformer_width // 64
    transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))

    model = CLIP(
        embed_dim,
        image_resolution, vision_layers, vision_width, vision_patch_size,
        context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
    )

    for key in ["input_resolution", "context_length", "vocab_size"]:
        if key in state_dict:
            del state_dict[key]

    convert_weights(model)
    model.load_state_dict(state_dict)
    return model.eval()