Spaces:
Running
Running
File size: 20,167 Bytes
ad4721b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import copy
import json
import math
import logging
import tarfile
import tempfile
import shutil
import numpy as np
import torch
from torch import nn
from .file_utils import cached_path
from .until_config import PretrainedConfig
from .until_module import PreTrainedModel, LayerNorm, ACT2FN
logger = logging.getLogger(__name__)
PRETRAINED_MODEL_ARCHIVE_MAP = {}
CONFIG_NAME = 'decoder_config.json'
WEIGHTS_NAME = 'decoder_pytorch_model.bin'
class DecoderConfig(PretrainedConfig):
"""Configuration class to store the configuration of a `DecoderModel`.
"""
pretrained_model_archive_map = PRETRAINED_MODEL_ARCHIVE_MAP
config_name = CONFIG_NAME
weights_name = WEIGHTS_NAME
def __init__(self,
vocab_size_or_config_json_file,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
type_vocab_size=2,
initializer_range=0.02,
max_target_embeddings=128,
num_decoder_layers=1):
"""Constructs DecoderConfig.
Args:
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `DecoderModel`.
hidden_size: Size of the encoder layers and the pooler layer.
num_hidden_layers: Number of hidden layers in the Transformer encoder.
num_attention_heads: Number of attention heads for each attention layer in
the Transformer encoder.
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
layer in the Transformer encoder.
hidden_act: The non-linear activation function (function or string) in the
encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
hidden_dropout_prob: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob: The dropout ratio for the attention
probabilities.
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
`DecoderModel`.
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
max_target_embeddings: The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048).
num_decoder_layers:
"""
if isinstance(vocab_size_or_config_json_file, str):
with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
json_config = json.loads(reader.read())
for key, value in json_config.items():
self.__dict__[key] = value
elif isinstance(vocab_size_or_config_json_file, int):
self.vocab_size = vocab_size_or_config_json_file
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.max_target_embeddings = max_target_embeddings
self.num_decoder_layers = num_decoder_layers
else:
raise ValueError("First argument must be either a vocabulary size (int)"
"or the path to a pretrained model config file (str)")
class BertSelfOutput(nn.Module):
def __init__(self, config):
super(BertSelfOutput, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertIntermediate(nn.Module):
def __init__(self, config):
super(BertIntermediate, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
self.intermediate_act_fn = ACT2FN[config.hidden_act] \
if isinstance(config.hidden_act, str) else config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BertOutput(nn.Module):
def __init__(self, config):
super(BertOutput, self).__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super(BertPredictionHeadTransform, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.transform_act_fn = ACT2FN[config.hidden_act] \
if isinstance(config.hidden_act, str) else config.hidden_act
self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class BertLMPredictionHead(nn.Module):
def __init__(self, config, decoder_model_embedding_weights):
super(BertLMPredictionHead, self).__init__()
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(decoder_model_embedding_weights.size(1),
decoder_model_embedding_weights.size(0),
bias=False)
self.decoder.weight = decoder_model_embedding_weights
self.bias = nn.Parameter(torch.zeros(decoder_model_embedding_weights.size(0)))
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states) + self.bias
return hidden_states
class BertOnlyMLMHead(nn.Module):
def __init__(self, config, decoder_model_embedding_weights):
super(BertOnlyMLMHead, self).__init__()
self.predictions = BertLMPredictionHead(config, decoder_model_embedding_weights)
def forward(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class MultiHeadAttention(nn.Module):
''' Multi-Head Attention module '''
def __init__(self, config):
super(MultiHeadAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, q, k, v, attention_mask):
mixed_query_layer = self.query(q)
mixed_key_layer = self.key(k)
mixed_value_layer = self.value(v)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer, attention_scores
class PositionwiseFeedForward(nn.Module):
''' A two-feed-forward-layer module '''
def __init__(self, d_in, d_hid, dropout=0.1):
super().__init__()
self.w_1 = nn.Conv1d(d_in, d_hid, 1) # position-wise
self.w_2 = nn.Conv1d(d_hid, d_in, 1) # position-wise
self.layer_norm = nn.LayerNorm(d_in)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
residual = x
output = x.transpose(1, 2)
output = self.w_2(ACT2FN["gelu"](self.w_1(output)))
output = output.transpose(1, 2)
output = self.dropout(output)
output = self.layer_norm(output + residual)
return output
class DecoderAttention(nn.Module):
def __init__(self, config):
super(DecoderAttention, self).__init__()
self.att = MultiHeadAttention(config)
self.output = BertSelfOutput(config)
def forward(self, q, k, v, attention_mask):
att_output, attention_probs = self.att(q, k, v, attention_mask)
attention_output = self.output(att_output, q)
return attention_output, attention_probs
class EncoderLayer(nn.Module):
def __init__(self, config):
super(EncoderLayer, self).__init__()
self.slf_attn = DecoderAttention(config)
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
def forward(self, dec_input, slf_attn_mask=None):
slf_output, slf_att_scores = self.slf_attn(dec_input, dec_input, dec_input, slf_attn_mask)
intermediate_output = self.intermediate(slf_output)
dec_output = self.output(intermediate_output, slf_output)
return dec_output, slf_att_scores
class DecoderLayer(nn.Module):
def __init__(self, config):
super(DecoderLayer, self).__init__()
self.slf_attn = DecoderAttention(config)
self.enc_attn = DecoderAttention(config)
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
def forward(self, dec_input, enc_output, slf_attn_mask=None, dec_enc_attn_mask=None):
slf_output, _ = self.slf_attn(dec_input, dec_input, dec_input, slf_attn_mask)
dec_output, dec_att_scores = self.enc_attn(slf_output, enc_output, enc_output, dec_enc_attn_mask)
intermediate_output = self.intermediate(dec_output)
dec_output = self.output(intermediate_output, dec_output)
return dec_output, dec_att_scores
class DecoderEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings.
"""
def __init__(self, config, decoder_word_embeddings_weight, decoder_position_embeddings_weight):
super(DecoderEmbeddings, self).__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
self.position_embeddings = nn.Embedding(config.max_target_embeddings, config.hidden_size)
self.word_embeddings.weight = decoder_word_embeddings_weight
self.position_embeddings.weight = decoder_position_embeddings_weight
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids):
seq_length = input_ids.size(1)
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
words_embeddings = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
embeddings = words_embeddings + position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class Encoder(nn.Module):
def __init__(self, config):
super(Encoder, self).__init__()
layer = EncoderLayer(config)
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_decoder_layers)])
def forward(self, hidden_states, self_attn_mask, output_all_encoded_layers=False):
dec_att_scores = None
all_encoder_layers = []
all_dec_att_probs = []
for layer_module in self.layer:
hidden_states, dec_att_scores = layer_module(hidden_states, self_attn_mask)
if output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
all_dec_att_probs.append(dec_att_scores)
if not output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
all_dec_att_probs.append(dec_att_scores)
return all_encoder_layers, all_dec_att_probs
class Decoder(nn.Module):
def __init__(self, config):
super(Decoder, self).__init__()
layer = DecoderLayer(config)
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_decoder_layers)])
def forward(self, hidden_states, encoder_outs, self_attn_mask, attention_mask, output_all_encoded_layers=False):
dec_att_scores = None
all_encoder_layers = []
all_dec_att_probs = []
for i, layer_module in enumerate(self.layer):
if isinstance(encoder_outs, list):
hidden_states, dec_att_scores = layer_module(hidden_states, encoder_outs[i], self_attn_mask, attention_mask)
else:
hidden_states, dec_att_scores = layer_module(hidden_states, encoder_outs, self_attn_mask, attention_mask)
if output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
all_dec_att_probs.append(dec_att_scores)
if not output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
all_dec_att_probs.append(dec_att_scores)
return all_encoder_layers, all_dec_att_probs
class DecoderClassifier(nn.Module):
def __init__(self, config, embedding_weights):
super(DecoderClassifier, self).__init__()
self.cls = BertOnlyMLMHead(config, embedding_weights)
def forward(self, hidden_states):
cls_scores = self.cls(hidden_states)
return cls_scores
class DecoderModel(PreTrainedModel):
"""
Transformer decoder consisting of *args.decoder_layers* layers. Each layer
is a :class:`TransformerDecoderLayer`.
Args:
args (argparse.Namespace): parsed command-line arguments
final_norm (bool, optional): apply layer norm to the output of the
final decoder layer (default: True).
"""
def __init__(self, config, decoder_word_embeddings_weight, decoder_position_embeddings_weight):
super(DecoderModel, self).__init__(config)
self.config = config
self.max_target_length = config.max_target_embeddings
self.embeddings = DecoderEmbeddings(config, decoder_word_embeddings_weight, decoder_position_embeddings_weight)
self.decoder = Decoder(config)
self.encoder = Encoder(config)
self.classifier = DecoderClassifier(config, decoder_word_embeddings_weight)
self.apply(self.init_weights)
def forward(self, input_ids, encoder_outs=None, answer_mask=None, encoder_mask=None):
"""
Args:
input_ids (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for input feeding/teacher forcing
encoder_outs (Tensor, optional): output from the encoder, used for encoder-side attention
Returns:
tuple:
- the last decoder layer's output of shape `(batch, tgt_len, vocab)`
- the last decoder layer's attention weights of shape `(batch, tgt_len, src_len)`
"""
embedding_output = self.embeddings(input_ids)
extended_encoder_mask = encoder_mask.unsqueeze(1).unsqueeze(2) # b x 1 x 1 x ls
extended_encoder_mask = extended_encoder_mask.to(dtype=self.dtype) # fp16 compatibility
extended_encoder_mask = (1.0 - extended_encoder_mask) * -10000.0
extended_answer_mask = answer_mask.unsqueeze(1).unsqueeze(2)
extended_answer_mask = extended_answer_mask.to(dtype=self.dtype) # fp16 compatibility
sz_b, len_s, _ = embedding_output.size()
subsequent_mask = torch.triu(torch.ones((len_s, len_s), device=embedding_output.device, dtype=embedding_output.dtype), diagonal=1)
self_attn_mask = subsequent_mask.unsqueeze(0).expand(sz_b, -1, -1).unsqueeze(1) # b x 1 x ls x ls
slf_attn_mask = ((1.0 - extended_answer_mask) + self_attn_mask).gt(0).to(dtype=self.dtype)
self_attn_mask = slf_attn_mask * -10000.0
encoder_outs, _ = self.encoder(encoder_outs, extended_encoder_mask, output_all_encoded_layers=True)
# encoder_outs = encoder_outs[-1]
decoded_layers, dec_att_scores = self.decoder(embedding_output,
encoder_outs,
self_attn_mask,
extended_encoder_mask,
)
sequence_output = decoded_layers[-1]
cls_scores = self.classifier(sequence_output)
return cls_scores
|