File size: 20,167 Bytes
ad4721b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import copy
import json
import math
import logging
import tarfile
import tempfile
import shutil
import numpy as np

import torch
from torch import nn
from .file_utils import cached_path
from .until_config import PretrainedConfig
from .until_module import PreTrainedModel, LayerNorm, ACT2FN

logger = logging.getLogger(__name__)

PRETRAINED_MODEL_ARCHIVE_MAP = {}
CONFIG_NAME = 'decoder_config.json'
WEIGHTS_NAME = 'decoder_pytorch_model.bin'


class DecoderConfig(PretrainedConfig):
    """Configuration class to store the configuration of a `DecoderModel`.
    """
    pretrained_model_archive_map = PRETRAINED_MODEL_ARCHIVE_MAP
    config_name = CONFIG_NAME
    weights_name = WEIGHTS_NAME
    def __init__(self,
                 vocab_size_or_config_json_file,
                 hidden_size=768,
                 num_hidden_layers=12,
                 num_attention_heads=12,
                 intermediate_size=3072,
                 hidden_act="gelu",
                 hidden_dropout_prob=0.1,
                 attention_probs_dropout_prob=0.1,
                 type_vocab_size=2,
                 initializer_range=0.02,
                 max_target_embeddings=128,
                 num_decoder_layers=1):
        """Constructs DecoderConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `DecoderModel`.
            hidden_size: Size of the encoder layers and the pooler layer.
            num_hidden_layers: Number of hidden layers in the Transformer encoder.
            num_attention_heads: Number of attention heads for each attention layer in
                the Transformer encoder.
            intermediate_size: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            hidden_act: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            hidden_dropout_prob: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob: The dropout ratio for the attention
                probabilities.
            type_vocab_size: The vocabulary size of the `token_type_ids` passed into
                `DecoderModel`.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
            max_target_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            num_decoder_layers:
        """
        if isinstance(vocab_size_or_config_json_file, str):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.hidden_act = hidden_act
            self.intermediate_size = intermediate_size
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.type_vocab_size = type_vocab_size
            self.initializer_range = initializer_range
            self.max_target_embeddings = max_target_embeddings
            self.num_decoder_layers = num_decoder_layers
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")


class BertSelfOutput(nn.Module):
    def __init__(self, config):
        super(BertSelfOutput, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states

class BertIntermediate(nn.Module):
    def __init__(self, config):
        super(BertIntermediate, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        self.intermediate_act_fn = ACT2FN[config.hidden_act] \
            if isinstance(config.hidden_act, str) else config.hidden_act

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
    def __init__(self, config):
        super(BertOutput, self).__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super(BertPredictionHeadTransform, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.transform_act_fn = ACT2FN[config.hidden_act] \
            if isinstance(config.hidden_act, str) else config.hidden_act
        self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12)

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class BertLMPredictionHead(nn.Module):
    def __init__(self, config, decoder_model_embedding_weights):
        super(BertLMPredictionHead, self).__init__()
        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = nn.Linear(decoder_model_embedding_weights.size(1),
                                 decoder_model_embedding_weights.size(0),
                                 bias=False)
        self.decoder.weight = decoder_model_embedding_weights
        self.bias = nn.Parameter(torch.zeros(decoder_model_embedding_weights.size(0)))

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states) + self.bias
        return hidden_states


class BertOnlyMLMHead(nn.Module):
    def __init__(self, config, decoder_model_embedding_weights):
        super(BertOnlyMLMHead, self).__init__()
        self.predictions = BertLMPredictionHead(config, decoder_model_embedding_weights)

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores

class MultiHeadAttention(nn.Module):
    ''' Multi-Head Attention module '''

    def __init__(self, config):
        super(MultiHeadAttention, self).__init__()

        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(self, q, k, v, attention_mask):
        mixed_query_layer = self.query(q)
        mixed_key_layer = self.key(k)
        mixed_value_layer = self.value(v)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
        attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        context_layer = torch.matmul(attention_probs, value_layer)
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)

        return context_layer, attention_scores

class PositionwiseFeedForward(nn.Module):
    ''' A two-feed-forward-layer module '''

    def __init__(self, d_in, d_hid, dropout=0.1):
        super().__init__()
        self.w_1 = nn.Conv1d(d_in, d_hid, 1) # position-wise
        self.w_2 = nn.Conv1d(d_hid, d_in, 1) # position-wise
        self.layer_norm = nn.LayerNorm(d_in)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        residual = x
        output = x.transpose(1, 2)
        output = self.w_2(ACT2FN["gelu"](self.w_1(output)))
        output = output.transpose(1, 2)
        output = self.dropout(output)
        output = self.layer_norm(output + residual)
        return output

class DecoderAttention(nn.Module):
    def __init__(self, config):
        super(DecoderAttention, self).__init__()
        self.att = MultiHeadAttention(config)
        self.output = BertSelfOutput(config)

    def forward(self, q, k, v, attention_mask):
        att_output, attention_probs = self.att(q, k, v, attention_mask)
        attention_output = self.output(att_output, q)
        return attention_output, attention_probs

class EncoderLayer(nn.Module):
    def __init__(self, config):
        super(EncoderLayer, self).__init__()
        self.slf_attn = DecoderAttention(config)
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

    def forward(self, dec_input, slf_attn_mask=None):
        slf_output, slf_att_scores = self.slf_attn(dec_input, dec_input, dec_input, slf_attn_mask)
        intermediate_output = self.intermediate(slf_output)
        dec_output = self.output(intermediate_output, slf_output)
        return dec_output, slf_att_scores

class DecoderLayer(nn.Module):
    def __init__(self, config):
        super(DecoderLayer, self).__init__()
        self.slf_attn = DecoderAttention(config)
        self.enc_attn = DecoderAttention(config)
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

    def forward(self, dec_input, enc_output, slf_attn_mask=None, dec_enc_attn_mask=None):
        slf_output, _ = self.slf_attn(dec_input, dec_input, dec_input, slf_attn_mask)
        dec_output, dec_att_scores = self.enc_attn(slf_output, enc_output, enc_output, dec_enc_attn_mask)
        intermediate_output = self.intermediate(dec_output)
        dec_output = self.output(intermediate_output, dec_output)
        return dec_output, dec_att_scores

class DecoderEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.
    """
    def __init__(self, config, decoder_word_embeddings_weight, decoder_position_embeddings_weight):
        super(DecoderEmbeddings, self).__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
        self.position_embeddings = nn.Embedding(config.max_target_embeddings, config.hidden_size)
        self.word_embeddings.weight = decoder_word_embeddings_weight
        self.position_embeddings.weight = decoder_position_embeddings_weight

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, input_ids):
        seq_length = input_ids.size(1)
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)

        embeddings = words_embeddings + position_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings

class Encoder(nn.Module):
    def __init__(self, config):
        super(Encoder, self).__init__()
        layer = EncoderLayer(config)
        self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_decoder_layers)])

    def forward(self, hidden_states, self_attn_mask, output_all_encoded_layers=False):
        dec_att_scores = None
        all_encoder_layers = []
        all_dec_att_probs = []
        for layer_module in self.layer:
            hidden_states, dec_att_scores = layer_module(hidden_states, self_attn_mask)
            if output_all_encoded_layers:
                all_encoder_layers.append(hidden_states)
                all_dec_att_probs.append(dec_att_scores)
        if not output_all_encoded_layers:
            all_encoder_layers.append(hidden_states)
            all_dec_att_probs.append(dec_att_scores)
        return all_encoder_layers, all_dec_att_probs

class Decoder(nn.Module):
    def __init__(self, config):
        super(Decoder, self).__init__()
        layer = DecoderLayer(config)
        self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_decoder_layers)])

    def forward(self, hidden_states, encoder_outs, self_attn_mask, attention_mask, output_all_encoded_layers=False):
        dec_att_scores = None
        all_encoder_layers = []
        all_dec_att_probs = []
        for i, layer_module in enumerate(self.layer):
            if isinstance(encoder_outs, list):
                hidden_states, dec_att_scores = layer_module(hidden_states, encoder_outs[i], self_attn_mask, attention_mask)
            else:
                hidden_states, dec_att_scores = layer_module(hidden_states, encoder_outs, self_attn_mask, attention_mask)
            if output_all_encoded_layers:
                all_encoder_layers.append(hidden_states)
                all_dec_att_probs.append(dec_att_scores)
        if not output_all_encoded_layers:
            all_encoder_layers.append(hidden_states)
            all_dec_att_probs.append(dec_att_scores)
        return all_encoder_layers, all_dec_att_probs

class DecoderClassifier(nn.Module):
    def __init__(self, config, embedding_weights):
        super(DecoderClassifier, self).__init__()
        self.cls = BertOnlyMLMHead(config, embedding_weights)

    def forward(self, hidden_states):
        cls_scores = self.cls(hidden_states)
        return cls_scores

class DecoderModel(PreTrainedModel):

    """
    Transformer decoder consisting of *args.decoder_layers* layers. Each layer
    is a :class:`TransformerDecoderLayer`.

    Args:
        args (argparse.Namespace): parsed command-line arguments
        final_norm (bool, optional): apply layer norm to the output of the
            final decoder layer (default: True).
    """

    def __init__(self, config, decoder_word_embeddings_weight, decoder_position_embeddings_weight):
        super(DecoderModel, self).__init__(config)
        self.config = config
        self.max_target_length = config.max_target_embeddings
        self.embeddings = DecoderEmbeddings(config, decoder_word_embeddings_weight, decoder_position_embeddings_weight)
        self.decoder = Decoder(config)
        self.encoder = Encoder(config)
        self.classifier = DecoderClassifier(config, decoder_word_embeddings_weight)
        self.apply(self.init_weights)

    def forward(self, input_ids, encoder_outs=None, answer_mask=None, encoder_mask=None):
        """
        Args:
            input_ids (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for input feeding/teacher forcing
            encoder_outs (Tensor, optional): output from the encoder, used for encoder-side attention

        Returns:
            tuple:
                - the last decoder layer's output of shape `(batch, tgt_len, vocab)`
                - the last decoder layer's attention weights of shape `(batch, tgt_len, src_len)`
        """
        
        embedding_output = self.embeddings(input_ids)

        extended_encoder_mask = encoder_mask.unsqueeze(1).unsqueeze(2)   # b x 1 x 1 x ls
        extended_encoder_mask = extended_encoder_mask.to(dtype=self.dtype) # fp16 compatibility
        extended_encoder_mask = (1.0 - extended_encoder_mask) * -10000.0

        extended_answer_mask = answer_mask.unsqueeze(1).unsqueeze(2)
        extended_answer_mask = extended_answer_mask.to(dtype=self.dtype)  # fp16 compatibility

        sz_b, len_s, _ = embedding_output.size()
        subsequent_mask = torch.triu(torch.ones((len_s, len_s), device=embedding_output.device, dtype=embedding_output.dtype), diagonal=1)
        self_attn_mask = subsequent_mask.unsqueeze(0).expand(sz_b, -1, -1).unsqueeze(1)  # b x 1 x ls x ls
        slf_attn_mask = ((1.0 - extended_answer_mask) + self_attn_mask).gt(0).to(dtype=self.dtype)
        self_attn_mask = slf_attn_mask * -10000.0

        encoder_outs, _ = self.encoder(encoder_outs, extended_encoder_mask, output_all_encoded_layers=True)
        # encoder_outs = encoder_outs[-1]

        decoded_layers, dec_att_scores = self.decoder(embedding_output,
                                      encoder_outs,
                                      self_attn_mask,
                                      extended_encoder_mask,
                                      )
        sequence_output = decoded_layers[-1]
        cls_scores = self.classifier(sequence_output)

        return cls_scores