pooyanrg's picture
fix
c27bfaf
raw
history blame
11.2 kB
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
import torch
from torchvision.transforms import Compose, Resize, ToTensor, Normalize
from utils.model import init_model
from utils.tokenization_clip import SimpleTokenizer as ClipTokenizer
from fastapi.staticfiles import StaticFiles
from fileservice import app
html_text = """
<div id="container">
<canvas id="canvas" width="512" height="512"></canvas><img id="canvas-background" style="display:none;"/>
</div>
"""
def image_to_tensor(image_path):
image = Image.open(image_path).convert('RGB')
preprocess = Compose([
Resize([224, 224], interpolation=Image.BICUBIC),
lambda image: image.convert("RGB"),
ToTensor(),
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
])
image_data = preprocess(image)
return {'image': image_data}
def get_image_data(image_path):
image_input = image_to_tensor(image_path)
return image_input
def get_intervention_vector(selected_cells_bef, selected_cells_aft):
left = np.reshape(np.zeros((1, 14 * 14)), (14, 14))
right = np.reshape(np.zeros((1, 14 * 14)), (14, 14))
for (i, j) in selected_cells_bef:
left[i, j] = 1.
for (i, j) in selected_cells_aft:
right[i, j] = 1.
left_map = np.zeros((1, 14 * 14 + 1))
right_map = np.zeros((1, 14 * 14 + 1))
left_map[0, 1:] = np.reshape(left, (1, 14 * 14))
right_map[0, 1:] = np.reshape(right, (1, 14 * 14))
if len(selected_cells_bef) == 0:
left_map[0, 0] = 0.0
if len(selected_cells_aft) == 0:
right_map[0, 0] = 0.0
return left_map, right_map
def _get_rawimage(image_path):
# Pair x L x T x 3 x H x W
image = np.zeros((1, 3, 224,
224), dtype=np.float)
for i in range(1):
raw_image_data = get_image_data(image_path)
raw_image_data = raw_image_data['image']
image[i] = raw_image_data
return image
def greedy_decode(model, tokenizer, video, video_mask, gt_left_map, gt_right_map):
visual_output, left_map, right_map = model.get_sequence_visual_output(video, video_mask,
gt_left_map[:, 0, :].squeeze(), gt_right_map[:, 0, :].squeeze())
video_mask = torch.ones(visual_output.shape[0], visual_output.shape[1], device=visual_output.device).long()
input_caption_ids = torch.zeros(visual_output.shape[0], device=visual_output.device).data.fill_(tokenizer.vocab["<|startoftext|>"])
input_caption_ids = input_caption_ids.long().unsqueeze(1)
decoder_mask = torch.ones_like(input_caption_ids)
for i in range(32):
decoder_scores = model.decoder_caption(visual_output, video_mask, input_caption_ids, decoder_mask, get_logits=True)
next_words = decoder_scores[:, -1].max(1)[1].unsqueeze(1)
input_caption_ids = torch.cat([input_caption_ids, next_words], 1)
next_mask = torch.ones_like(next_words)
decoder_mask = torch.cat([decoder_mask, next_mask], 1)
return input_caption_ids[:, 1:].tolist(), left_map, right_map
# Dummy prediction function
def predict_image(image_bef, image_aft, selected_cells_bef, selected_cells_aft):
if image_bef is None:
return "No image provided", "", ""
if image_aft is None:
return "No image provided", "", ""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = init_model('data/pytorch_model.pt', device)
tokenizer = ClipTokenizer()
left_map, right_map = get_intervention_vector(selected_cells_bef, selected_cells_aft)
left_map, right_map = torch.from_numpy(left_map).unsqueeze(0), torch.from_numpy(right_map).unsqueeze(0)
bef_image = torch.from_numpy(_get_rawimage(image_bef)).unsqueeze(1)
aft_image = torch.from_numpy(_get_rawimage(image_aft)).unsqueeze(1)
image_pair = torch.cat([bef_image, aft_image], 1)
image_mask = torch.from_numpy(np.ones(2, dtype=np.long)).unsqueeze(0)
result_list, left_map, right_map = greedy_decode(model, tokenizer, image_pair, image_mask, left_map, right_map)
decode_text_list = tokenizer.convert_ids_to_tokens(result_list[0])
if "<|endoftext|>" in decode_text_list:
SEP_index = decode_text_list.index("<|endoftext|>")
decode_text_list = decode_text_list[:SEP_index]
if "!" in decode_text_list:
PAD_index = decode_text_list.index("!")
decode_text_list = decode_text_list[:PAD_index]
decode_text = decode_text_list.strip()
# Generate dummy predictions
pred = f"{decode_text}"
# Include information about selected cells
selected_info_bef = f"{selected_cells_bef}" if selected_cells_bef else "No image patch was selected"
selected_info_aft = f"{selected_cells_aft}" if selected_cells_aft else "No image patch was selected"
return pred, selected_info_bef, selected_info_aft
# Add grid to the image
def add_grid_to_image(image_path, grid_size=14):
if image_path is None:
return None
image = Image.open(image_path)
w, h = image.size
image = image.convert('RGBA')
draw = ImageDraw.Draw(image)
x_positions = np.linspace(0, w, grid_size + 1)
y_positions = np.linspace(0, h, grid_size + 1)
# Draw the vertical lines
for x in x_positions[1:-1]:
line = ((x, 0), (x, h))
draw.line(line, fill='white')
# Draw the horizontal lines
for y in y_positions[1:-1]:
line = ((0, y), (w, y))
draw.line(line, fill='white')
return image, h, w
# Handle cell selection
def handle_click(image, evt: gr.SelectData, selected_cells, image_path):
if image is None:
return None, []
grid_size = 14
image, h, w = add_grid_to_image(image_path, grid_size)
x_positions = np.linspace(0, w, grid_size + 1)
y_positions = np.linspace(0, h, grid_size + 1)
# Calculate which cell was clicked
for index, x in enumerate(x_positions[:-1]):
if evt.index[0] >= x and evt.index[0] <= x_positions[index+1]:
row = index
for index, y in enumerate(y_positions[:-1]):
if evt.index[1] >= y and evt.index[1] <= y_positions[index+1]:
col = index
cell_idx = (row, col)
# Toggle selection
if cell_idx in selected_cells:
selected_cells.remove(cell_idx)
else:
selected_cells.append(cell_idx)
# Add semi-transparent overlay for selected cells
highlight_layer = Image.new('RGBA', (w, h), (0, 0, 0, 0)) # Fully transparent layer
highlight_draw = ImageDraw.Draw(highlight_layer)
# Define a lighter green color with 40% transparency
light_green = (144, 238, 144, 102) # RGB = (144, 238, 144), Alpha = 102 (40% of 255)
for (row, col) in selected_cells:
cell_top_left = (x_positions[row], y_positions[col])
cell_bottom_right = (x_positions[row + 1], y_positions[col + 1])
highlight_draw.rectangle([cell_top_left, cell_bottom_right], fill=light_green, outline='white')
result_img = Image.alpha_composite(image.convert('RGBA'), highlight_layer)
return result_img, selected_cells
# Process example images
def process_example(image_path_bef, image_path_aft):
# Add grid to the example image
image_bef_grid, _, _ = add_grid_to_image(image_path_bef, 14)
image_aft_grid, _, _ = add_grid_to_image(image_path_aft, 14)
return image_bef_grid, image_aft_grid # Reset selected cells and store original image
def display_image(image_path):
image_grid, _, _ = add_grid_to_image(image_path, 14)
return image_grid, []
with gr.Blocks() as demo:
gr.Markdown("# TAB: Transformer Attention Bottleneck")
# Instructions
gr.Markdown("""
## Instructions:
1. Upload an image or select one from the examples
2. Click on grid cells to select/deselect them
3. Click the 'Predict' button to get model predictions
""")
selected_cells_bef = gr.State([])
selected_cells_aft = gr.State([])
with gr.Row():
with gr.Column(scale=1):
# Input components with grid overlay
image_bef = gr.Image(type="filepath", visible=True)
image_aft = gr.Image(type="filepath", visible=True)
predict_btn = gr.Button("Predict")
with gr.Column(scale=1):
image_display_with_grid_bef = gr.Image(type="pil", label="Before Image with Grid")
image_display_with_grid_aft = gr.Image(type="pil", label="After Image with Grid")
# Add click event to the displayed image
image_display_with_grid_bef.select(
handle_click,
inputs=[image_display_with_grid_bef, selected_cells_bef, image_bef],
outputs=[image_display_with_grid_bef, selected_cells_bef]
)
image_display_with_grid_aft.select(
handle_click,
inputs=[image_display_with_grid_aft, selected_cells_aft, image_aft],
outputs=[image_display_with_grid_aft, selected_cells_aft]
)
with gr.Row():
with gr.Column(scale=1):
# Example images
examples = gr.Examples(
examples=[["data/images/CLEVR_default_000572.png", "data/images/CLEVR_semantic_000572.png"],
["data/images/CLEVR_default_003339.png", "data/images/CLEVR_semantic_003339.png"]],
inputs=[image_bef, image_aft],
# outputs=[image_display_with_grid_bef, image_display_with_grid_aft],
label="Example Images",
# fn=process_example,
examples_per_page=5
)
# image_bef.change(
# fn=display_image,
# inputs=[image_bef],
# outputs=[image_display_with_grid_bef, selected_cells_bef]
# )
# image_aft.change(
# fn=display_image,
# inputs=[image_aft],
# outputs=[image_display_with_grid_aft, selected_cells_aft]
# )
with gr.Column(scale=1):
# Output components
prediction = gr.Textbox(label="Predicted caption")
selected_info_bef = gr.Textbox(label="Selected patches on before")
selected_info_aft = gr.Textbox(label="Selected patches on after")
html = gr.HTML(html_text)
# Connect the predict button to the prediction function
predict_btn.click(
fn=predict_image,
inputs=[image_bef, image_aft, selected_cells_bef, selected_cells_aft],
outputs=[prediction, selected_info_bef, selected_info_aft]
)
image_bef.change(
fn=None,
inputs=[image_bef],
outputs=[],
_js="(image) => { initializeEditor(); importBackground(image); return []; }",
)
image_aft.change(
fn=None,
inputs=[image_aft],
outputs=[],
_js="(image) => { initializeEditor(); importBackground(image); return []; }",
)
app.mount("/js", StaticFiles(directory="js"), name="js")
gr.mount_gradio_app(app, demo, path="/")