Update app.py
Browse files
app.py
CHANGED
|
@@ -24,6 +24,9 @@ from PLCMOS.plc_mos import PLCMOSEstimator
|
|
| 24 |
from speechmos import dnsmos
|
| 25 |
from speechmos import plcmos
|
| 26 |
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
@st.cache
|
| 29 |
def load_model():
|
|
@@ -272,10 +275,10 @@ if st.button('Сгенерировать потери'):
|
|
| 272 |
|
| 273 |
PLC_massv2 = [plcmos.run("target.wav", sr=16000)['plcmos'], plcmos.run("lossy.wav", sr=16000)['plcmos'], plcmos.run("enhanced.wav", sr=16000)['plcmos']]
|
| 274 |
|
| 275 |
-
DNS = [dnsmos.run("target.wav", sr=16000)['ovrl_mos'], dnsmos.run("lossy.wav", sr=16000)['ovrl_mos'], dnsmos.run("enhanced.wav", sr=16000)['ovrl_mos']]
|
| 276 |
|
| 277 |
df_1['PLCMOSv2'] = PLC_massv2
|
| 278 |
-
df_1['DNSMOS'] = DNS
|
| 279 |
|
| 280 |
|
| 281 |
#df_2 = pd.DataFrame(columns=['DNSMOS', 'PLCMOSv2'])
|
|
@@ -290,6 +293,33 @@ if st.button('Сгенерировать потери'):
|
|
| 290 |
#df_2.columns = new_columns
|
| 291 |
#df_merged = df_1.merge(df_2, left_index=True, right_index=True)
|
| 292 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
st.dataframe(df_1)
|
| 294 |
|
| 295 |
|
|
|
|
| 24 |
from speechmos import dnsmos
|
| 25 |
from speechmos import plcmos
|
| 26 |
|
| 27 |
+
import speech_recognition as sr
|
| 28 |
+
from jiwer import wer
|
| 29 |
+
|
| 30 |
|
| 31 |
@st.cache
|
| 32 |
def load_model():
|
|
|
|
| 275 |
|
| 276 |
PLC_massv2 = [plcmos.run("target.wav", sr=16000)['plcmos'], plcmos.run("lossy.wav", sr=16000)['plcmos'], plcmos.run("enhanced.wav", sr=16000)['plcmos']]
|
| 277 |
|
| 278 |
+
#DNS = [dnsmos.run("target.wav", sr=16000)['ovrl_mos'], dnsmos.run("lossy.wav", sr=16000)['ovrl_mos'], dnsmos.run("enhanced.wav", sr=16000)['ovrl_mos']]
|
| 279 |
|
| 280 |
df_1['PLCMOSv2'] = PLC_massv2
|
| 281 |
+
#df_1['DNSMOS'] = DNS
|
| 282 |
|
| 283 |
|
| 284 |
#df_2 = pd.DataFrame(columns=['DNSMOS', 'PLCMOSv2'])
|
|
|
|
| 293 |
#df_2.columns = new_columns
|
| 294 |
#df_merged = df_1.merge(df_2, left_index=True, right_index=True)
|
| 295 |
|
| 296 |
+
|
| 297 |
+
r = sr.Recognizer ()
|
| 298 |
+
|
| 299 |
+
harvard = sr.AudioFile('target.wav')
|
| 300 |
+
with harvard as source:
|
| 301 |
+
audio = r.record(source)
|
| 302 |
+
|
| 303 |
+
orig = r.recognize_google(audio, language = "ru-RU")
|
| 304 |
+
|
| 305 |
+
harvard = sr.AudioFile('lossy.wav')
|
| 306 |
+
with harvard as source:
|
| 307 |
+
audio = r.record(source)
|
| 308 |
+
lossy = r.recognize_google(audio, language = "ru-RU")
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
harvard = sr.AudioFile('enhanced.wav')
|
| 312 |
+
with harvard as source:
|
| 313 |
+
audio = r.record(source)
|
| 314 |
+
enhanced = r.recognize_google(audio, language = "ru-RU")
|
| 315 |
+
|
| 316 |
+
error1 = wer(orig, orig)
|
| 317 |
+
error2 = wer(orig, lossy)
|
| 318 |
+
error2 = wer(orig, enhanced)
|
| 319 |
+
WER_mass=[error1, error2, error3]
|
| 320 |
+
|
| 321 |
+
df_1['WER'] = WER_mass
|
| 322 |
+
|
| 323 |
st.dataframe(df_1)
|
| 324 |
|
| 325 |
|