File size: 2,575 Bytes
ae02377
815b0dc
f3fe9b4
8ec4d2d
ae02377
 
815b0dc
f3fe9b4
5839973
815b0dc
ae02377
815b0dc
 
 
 
ae02377
 
815b0dc
d5ca063
815b0dc
ae02377
 
3ea1b9b
 
 
 
 
 
 
 
 
 
 
 
ae02377
 
 
815b0dc
ae02377
 
 
3ea1b9b
 
 
 
 
 
 
ae02377
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ea1b9b
ae02377
 
 
 
 
 
 
 
 
d5ca063
 
3ea1b9b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import json
from dataclasses import dataclass
from datetime import datetime

from huggingface_hub import hf_hub_download
from huggingface_hub.utils._errors import EntryNotFoundError
from loguru import logger


@dataclass
class CompetitionInfo:
    competition_id: str
    autotrain_token: str

    def __post_init__(self):
        try:
            config_fname = hf_hub_download(
                repo_id=self.competition_id,
                filename="conf",
                use_auth_token=self.autotrain_token,
                repo_type="dataset",
            )
            competition_desc = hf_hub_download(
                repo_id=self.competition_id,
                filename="COMPETITION_DESC.md",
                use_auth_token=self.autotrain_token,
                repo_type="dataset",
            )
            dataset_desc = hf_hub_download(
                repo_id=self.competition_id,
                filename="DATASET_DESC.md",
                use_auth_token=self.autotrain_token,
                repo_type="dataset",
            )
        except EntryNotFoundError:
            raise Exception("Competition config not found. Please check the competition id.")
        except Exception as e:
            logger.error(e)
            raise Exception("Hugging Face Hub is unreachable, please try again later.")

        self.config = self.load_config(config_fname)
        self.competition_desc = self.load_md(competition_desc)
        self.dataset_desc = self.load_md(dataset_desc)

    def load_md(self, md_path):
        with open(md_path) as f:
            md = f.read()
        return md

    def load_config(self, config_path):
        with open(config_path) as f:
            config = json.load(f)
        return config

    @property
    def submission_limit(self):
        return self.config["SUBMISSION_LIMIT"]

    @property
    def selection_limit(self):
        return self.config["SELECTION_LIMIT"]

    @property
    def end_date(self):
        e_d = self.config["END_DATE"]
        return datetime.strptime(e_d, "%Y-%m-%d")

    @property
    def eval_higher_is_better(self):
        hb = self.config["EVAL_HIGHER_IS_BETTER"]
        return True if int(hb) == 1 else False

    @property
    def competition_description(self):
        return self.competition_desc

    @property
    def competition_name(self):
        return self.config["COMPETITION_NAME"]

    @property
    def submission_columns(self):
        return self.config["SUBMISSION_COLUMNS"].split(",")

    @property
    def dataset_description(self):
        return self.dataset_desc