File size: 13,087 Bytes
815b0dc
 
 
 
 
 
 
 
 
 
 
 
d812604
815b0dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ff74ac
815b0dc
2ff74ac
815b0dc
 
 
 
 
 
2ff74ac
815b0dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f00a93
815b0dc
 
 
 
 
 
 
 
 
 
2f00a93
815b0dc
 
 
 
 
 
 
2f00a93
815b0dc
 
 
 
 
 
 
 
 
 
2ca97e8
815b0dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f00a93
815b0dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f00a93
815b0dc
 
 
 
 
 
 
 
 
2f00a93
815b0dc
 
 
 
 
 
 
f6ae029
d812604
 
 
 
f6ae029
 
 
 
 
2f00a93
f6ae029
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f00a93
f6ae029
 
 
 
 
815b0dc
 
 
 
 
 
1873be0
815b0dc
 
 
 
 
 
 
 
 
 
 
 
1873be0
815b0dc
 
1873be0
815b0dc
 
472a04b
815b0dc
 
 
 
 
 
 
 
472a04b
50dbb56
815b0dc
50dbb56
 
472a04b
 
 
 
 
815b0dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
472a04b
815b0dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1873be0
815b0dc
 
 
 
 
1873be0
815b0dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
472a04b
 
 
 
815b0dc
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import io
import json
import time
import uuid
from dataclasses import dataclass
from datetime import datetime

import pandas as pd
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.utils._errors import EntryNotFoundError
from loguru import logger

from .errors import AuthenticationError, NoSubmissionError, PastDeadlineError, SubmissionError, SubmissionLimitError
from .utils import http_get, http_post, user_authentication


@dataclass
class Submissions:
    competition_id: str
    submission_limit: str
    end_date: datetime
    autotrain_username: str
    autotrain_token: str
    autotrain_backend_api: str

    def __post_init__(self):
        self.public_sub_columns = [
            "date",
            "submission_id",
            "public_score",
            # "submission_comment",
            "selected",
            "status",
        ]
        self.private_sub_columns = [
            "date",
            "submission_id",
            "public_score",
            "private_score",
            # "submission_comment",
            "selected",
            "status",
        ]

    def _verify_submission(self, bytes_data):
        return True

    def _add_new_user(self, user_info):
        api = HfApi()
        user_submission_info = {}
        user_submission_info["name"] = user_info["name"]
        user_submission_info["id"] = user_info["id"]
        user_submission_info["submissions"] = []
        # convert user_submission_info to BufferedIOBase file object
        user_submission_info_json = json.dumps(user_submission_info)
        user_submission_info_json_bytes = user_submission_info_json.encode("utf-8")
        user_submission_info_json_buffer = io.BytesIO(user_submission_info_json_bytes)

        api.upload_file(
            path_or_fileobj=user_submission_info_json_buffer,
            path_in_repo=f"submission_info/{user_info['id']}.json",
            repo_id=self.competition_id,
            repo_type="dataset",
            token=self.autotrain_token,
        )

    def _check_user_submission_limit(self, user_info):
        user_id = user_info["id"]
        try:
            user_fname = hf_hub_download(
                repo_id=self.competition_id,
                filename=f"submission_info/{user_id}.json",
                use_auth_token=self.autotrain_token,
                repo_type="dataset",
            )
        except EntryNotFoundError:
            self._add_new_user(user_info)
            user_fname = hf_hub_download(
                repo_id=self.competition_id,
                filename=f"submission_info/{user_id}.json",
                use_auth_token=self.autotrain_token,
                repo_type="dataset",
            )
        except Exception as e:
            logger.error(e)
            raise Exception("Hugging Face Hub is unreachable, please try again later.")

        with open(user_fname, "r") as f:
            user_submission_info = json.load(f)

        todays_date = datetime.now().strftime("%Y-%m-%d")
        if len(user_submission_info["submissions"]) == 0:
            user_submission_info["submissions"] = []

        # count the number of times user has submitted today
        todays_submissions = 0
        for sub in user_submission_info["submissions"]:
            if sub["date"] == todays_date:
                todays_submissions += 1
        if todays_submissions >= self.submission_limit:
            return False
        return True

    def _increment_submissions(self, user_id, submission_id, submission_comment):
        user_fname = hf_hub_download(
            repo_id=self.competition_id,
            filename=f"submission_info/{user_id}.json",
            use_auth_token=self.autotrain_token,
            repo_type="dataset",
        )
        with open(user_fname, "r") as f:
            user_submission_info = json.load(f)
        todays_date = datetime.now().strftime("%Y-%m-%d")
        current_time = datetime.now().strftime("%H:%M:%S")

        # here goes all the default stuff for submission
        user_submission_info["submissions"].append(
            {
                "date": todays_date,
                "time": current_time,
                "submission_id": submission_id,
                "submission_comment": submission_comment,
                "status": "pending",
                "selected": False,
                "public_score": -1,
                "private_score": -1,
            }
        )
        # count the number of times user has submitted today
        todays_submissions = 0
        for sub in user_submission_info["submissions"]:
            if sub["date"] == todays_date:
                todays_submissions += 1

        # convert user_submission_info to BufferedIOBase file object
        user_submission_info_json = json.dumps(user_submission_info)
        user_submission_info_json_bytes = user_submission_info_json.encode("utf-8")
        user_submission_info_json_buffer = io.BytesIO(user_submission_info_json_bytes)
        api = HfApi()
        api.upload_file(
            path_or_fileobj=user_submission_info_json_buffer,
            path_in_repo=f"submission_info/{user_id}.json",
            repo_id=self.competition_id,
            repo_type="dataset",
            token=self.autotrain_token,
        )
        return todays_submissions

    def _download_user_subs(self, user_id):
        user_fname = hf_hub_download(
            repo_id=self.competition_id,
            filename=f"submission_info/{user_id}.json",
            use_auth_token=self.autotrain_token,
            repo_type="dataset",
        )
        with open(user_fname, "r") as f:
            user_submission_info = json.load(f)
        return user_submission_info["submissions"]

    def update_selected_submissions(self, user_token, selected_submission_ids):
        current_datetime = datetime.now()
        if current_datetime > self.end_date:
            raise PastDeadlineError("Competition has ended.")

        user_info = self._get_user_info(user_token)
        user_id = user_info["id"]

        user_fname = hf_hub_download(
            repo_id=self.competition_id,
            filename=f"submission_info/{user_id}.json",
            use_auth_token=self.autotrain_token,
            repo_type="dataset",
        )
        with open(user_fname, "r") as f:
            user_submission_info = json.load(f)

        for sub in user_submission_info["submissions"]:
            if sub["submission_id"] in selected_submission_ids:
                sub["selected"] = True
            else:
                sub["selected"] = False

        # convert user_submission_info to BufferedIOBase file object
        user_submission_info_json = json.dumps(user_submission_info)
        user_submission_info_json_bytes = user_submission_info_json.encode("utf-8")
        user_submission_info_json_buffer = io.BytesIO(user_submission_info_json_bytes)
        api = HfApi()
        api.upload_file(
            path_or_fileobj=user_submission_info_json_buffer,
            path_in_repo=f"submission_info/{user_id}.json",
            repo_id=self.competition_id,
            repo_type="dataset",
            token=self.autotrain_token,
        )

    def _get_user_subs(self, user_info, private=False):
        # get user submissions
        user_id = user_info["id"]
        try:
            user_submissions = self._download_user_subs(user_id)
        except EntryNotFoundError:
            raise NoSubmissionError("No submissions found ")

        submissions_df = pd.DataFrame(user_submissions)
        if not private:
            submissions_df = submissions_df.drop(columns=["private_score"])
            submissions_df = submissions_df[self.public_sub_columns]
        else:
            submissions_df = submissions_df[self.private_sub_columns]
        return submissions_df

    def _get_user_info(self, user_token):
        user_info = user_authentication(token=user_token)
        if "error" in user_info:
            raise AuthenticationError("Invalid token")

        if user_info["emailVerified"] is False:
            raise AuthenticationError("Please verify your email on Hugging Face Hub")
        return user_info

    def _create_autotrain_project(self, submission_id, competition_id, user_id, competition_type):
        project_config = {}
        project_config["dataset_name"] = "lewtun/imdb-dummy"
        project_config["dataset_config"] = "lewtun--imdb-dummy"
        project_config["dataset_split"] = "train"
        project_config["col_mapping"] = {"text": "text", "label": "target"}

        payload = {
            "username": self.autotrain_username,
            "proj_name": submission_id,
            "task": 26,
            "config": {
                "language": "unk",
                "max_models": 1,
                "competition": {
                    "submission_id": submission_id,
                    "competition_id": competition_id,
                    "user_id": user_id,
                    "competition_type": "generic",
                },
            },
        }

        project_json_resp = http_post(
            path="/projects/create",
            payload=payload,
            token=self.autotrain_token,
            domain=self.autotrain_backend_api,
        ).json()

        time.sleep(5)
        # Upload data
        payload = {
            "split": 4,
            "col_mapping": project_config["col_mapping"],
            "load_config": {"max_size_bytes": 0, "shuffle": False},
            "dataset_id": project_config["dataset_name"],
            "dataset_config": project_config["dataset_config"],
            "dataset_split": project_config["dataset_split"],
        }

        _ = http_post(
            path=f"/projects/{project_json_resp['id']}/data/dataset",
            payload=payload,
            token=self.autotrain_token,
            domain=self.autotrain_backend_api,
        ).json()
        logger.info("๐Ÿ’พ๐Ÿ’พ๐Ÿ’พ Dataset creation done ๐Ÿ’พ๐Ÿ’พ๐Ÿ’พ")

        # Process data
        _ = http_post(
            path=f"/projects/{project_json_resp['id']}/data/start_processing",
            token=self.autotrain_token,
            domain=self.autotrain_backend_api,
        ).json()

        logger.info("โณ Waiting for data processing to complete ...")
        is_data_processing_success = False
        while is_data_processing_success is not True:
            project_status = http_get(
                path=f"/projects/{project_json_resp['id']}",
                token=self.autotrain_token,
                domain=self.autotrain_backend_api,
            ).json()
            # See database.database.enums.ProjectStatus for definitions of `status`
            if project_status["status"] == 3:
                is_data_processing_success = True
                logger.info("โœ… Data processing complete!")
            time.sleep(3)

        # Approve training job
        _ = http_post(
            path=f"/projects/{project_json_resp['id']}/start_training",
            token=self.autotrain_token,
            domain=self.autotrain_backend_api,
        ).json()

    def my_submissions(self, user_token):
        user_info = self._get_user_info(user_token)
        current_date_time = datetime.now()
        private = False
        if current_date_time >= self.end_date:
            private = True
        subs = self._get_user_subs(user_info, private=private)
        return subs

    def new_submission(self, user_token, uploaded_file):
        # verify token
        user_info = self._get_user_info(user_token)

        # check if user can submit to the competition
        if self._check_user_submission_limit(user_info) is False:
            raise SubmissionLimitError("Submission limit reached")

        with open(uploaded_file.name, "rb") as f:
            bytes_data = f.read()
        # verify file is valid
        if not self._verify_submission(bytes_data):
            raise SubmissionError("Invalid submission file")
        else:
            user_id = user_info["id"]
            submission_id = str(uuid.uuid4())
            file_extension = uploaded_file.orig_name.split(".")[-1]
            # upload file to hf hub
            api = HfApi()
            api.upload_file(
                path_or_fileobj=bytes_data,
                path_in_repo=f"submissions/{user_id}-{submission_id}.{file_extension}",
                repo_id=self.competition_id,
                repo_type="dataset",
                token=self.autotrain_token,
            )
            # update submission limit
            submissions_made = self._increment_submissions(
                user_id=user_id,
                submission_id=submission_id,
                submission_comment="",
            )
            # schedule submission for evaluation
            self._create_autotrain_project(
                submission_id=f"{submission_id}",
                competition_id=f"{self.competition_id}",
                user_id=user_id,
                competition_type="generic",
            )
        remaining_submissions = self.submission_limit - submissions_made
        return remaining_submissions