File size: 8,728 Bytes
f3fe9b4
 
 
8ec4d2d
f3fe9b4
8ec4d2d
 
 
 
f3fe9b4
 
8ec4d2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3fe9b4
8ec4d2d
 
 
 
 
 
f3fe9b4
 
 
8ec4d2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import datetime
import io
import json
import time

import requests
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.utils._errors import EntryNotFoundError

import config


def get_auth_headers(token: str, prefix: str = "Bearer"):
    return {"Authorization": f"{prefix} {token}"}


def http_post(path: str, token: str, payload=None, domain: str = None, params=None) -> requests.Response:
    """HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
    try:
        response = requests.post(
            url=domain + path, json=payload, headers=get_auth_headers(token=token), allow_redirects=True, params=params
        )
    except requests.exceptions.ConnectionError:
        print("❌ Failed to reach AutoNLP API, check your internet connection")
    response.raise_for_status()
    return response


def http_get(path: str, token: str, domain: str = None) -> requests.Response:
    """HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
    try:
        response = requests.get(url=domain + path, headers=get_auth_headers(token=token), allow_redirects=True)
    except requests.exceptions.ConnectionError:
        print("❌ Failed to reach AutoNLP API, check your internet connection")
    response.raise_for_status()
    return response


def create_project(project_id, submission_dataset, model, dataset):
    project_config = {}
    project_config["dataset_name"] = "lewtun/imdb-dummy"
    project_config["dataset_config"] = "lewtun--imdb-dummy"
    project_config["dataset_split"] = "train"
    project_config["col_mapping"] = {"text": "text", "label": "target"}

    payload = {
        "username": config.AUTOTRAIN_USERNAME,
        "proj_name": project_id,
        "task": 1,
        "config": {
            "language": "en",
            "max_models": 5,
            "benchmark": {
                "dataset": dataset,
                "model": model,
                "submission_dataset": submission_dataset,
            },
        },
    }

    project_json_resp = http_post(
        path="/projects/create", payload=payload, token=config.AUTOTRAIN_TOKEN, domain=config.AUTOTRAIN_BACKEND_API
    ).json()
    print(project_json_resp)
    time.sleep(5)
    # Upload data
    payload = {
        "split": 4,
        "col_mapping": project_config["col_mapping"],
        "load_config": {"max_size_bytes": 0, "shuffle": False},
        "dataset_id": project_config["dataset_name"],
        "dataset_config": project_config["dataset_config"],
        "dataset_split": project_config["dataset_split"],
    }

    data_json_resp = http_post(
        path=f"/projects/{project_json_resp['id']}/data/dataset",
        payload=payload,
        token=config.AUTOTRAIN_TOKEN,
        domain=config.AUTOTRAIN_BACKEND_API,
    ).json()
    print("πŸ’ΎπŸ’ΎπŸ’Ύ Dataset creation πŸ’ΎπŸ’ΎπŸ’Ύ")
    print(data_json_resp)

    # Process data
    data_proc_json_resp = http_post(
        path=f"/projects/{project_json_resp['id']}/data/start_processing",
        token=config.AUTOTRAIN_TOKEN,
        domain=config.AUTOTRAIN_BACKEND_API,
    ).json()
    print(f"πŸͺ Start data processing response: {data_proc_json_resp}")

    print("⏳ Waiting for data processing to complete ...")
    is_data_processing_success = False
    while is_data_processing_success is not True:
        project_status = http_get(
            path=f"/projects/{project_json_resp['id']}",
            token=config.AUTOTRAIN_TOKEN,
            domain=config.AUTOTRAIN_BACKEND_API,
        ).json()
        # See database.database.enums.ProjectStatus for definitions of `status`
        if project_status["status"] == 3:
            is_data_processing_success = True
            print("βœ… Data processing complete!")
        time.sleep(10)

    # Approve training job
    train_job_resp = http_post(
        path=f"/projects/{project_json_resp['id']}/start_training",
        token=config.AUTOTRAIN_TOKEN,
        domain=config.AUTOTRAIN_BACKEND_API,
    ).json()
    print(f"πŸƒ Training job approval response: {train_job_resp}")


def user_authentication(token):
    headers = {}
    cookies = {}
    if token.startswith("hf_"):
        headers["Authorization"] = f"Bearer {token}"
    else:
        cookies = {"token": token}
    try:
        response = requests.get(
            config.MOONLANDING_URL + "/api/whoami-v2",
            headers=headers,
            cookies=cookies,
            timeout=3,
        )
    except (requests.Timeout, ConnectionError) as err:
        print(f"Failed to request whoami-v2 - {repr(err)}")
        raise Exception("Hugging Face Hub is unreachable, please try again later.")
    return response.json()


def add_new_user(user_info):
    api = HfApi()
    user_submission_info = {}
    user_submission_info["name"] = user_info["name"]
    user_submission_info["id"] = user_info["id"]
    user_submission_info["submissions"] = []
    # convert user_submission_info to BufferedIOBase file object
    user_submission_info_json = json.dumps(user_submission_info)
    user_submission_info_json_bytes = user_submission_info_json.encode("utf-8")
    user_submission_info_json_buffer = io.BytesIO(user_submission_info_json_bytes)

    api.upload_file(
        path_or_fileobj=user_submission_info_json_buffer,
        path_in_repo=f"{user_info['id']}.json",
        repo_id=config.COMPETITION_ID,
        repo_type="dataset",
        token=config.AUTOTRAIN_TOKEN,
    )


def check_user_submission_limit(user_info):
    user_id = user_info["id"]
    try:
        user_fname = hf_hub_download(
            repo_id=config.COMPETITION_ID,
            filename=f"{user_id}.json",
            use_auth_token=config.AUTOTRAIN_TOKEN,
            repo_type="dataset",
        )
    except EntryNotFoundError:
        add_new_user(user_info)
        user_fname = hf_hub_download(
            repo_id=config.COMPETITION_ID,
            filename=f"{user_id}.json",
            use_auth_token=config.AUTOTRAIN_TOKEN,
            repo_type="dataset",
        )
    except Exception as e:
        print(e)
        raise Exception("Hugging Face Hub is unreachable, please try again later.")

    with open(user_fname, "r") as f:
        user_submission_info = json.load(f)

    todays_date = datetime.datetime.now().strftime("%Y-%m-%d")
    if len(user_submission_info["submissions"]) == 0:
        user_submission_info["submissions"] = []

    # count the number of times user has submitted today
    todays_submissions = 0
    for sub in user_submission_info["submissions"]:
        if sub["date"] == todays_date:
            todays_submissions += 1
    if todays_submissions >= config.SUBMISSION_LIMIT:
        return False
    return True


def increment_submissions(user_id, submission_id, submission_comment):
    user_fname = hf_hub_download(
        repo_id=config.COMPETITION_ID,
        filename=f"{user_id}.json",
        use_auth_token=config.AUTOTRAIN_TOKEN,
        repo_type="dataset",
    )
    with open(user_fname, "r") as f:
        user_submission_info = json.load(f)
    todays_date = datetime.datetime.now().strftime("%Y-%m-%d")
    # here goes all the default stuff for submission
    user_submission_info["submissions"].append(
        {
            "date": todays_date,
            "submission_id": submission_id,
            "submission_comment": submission_comment,
            "status": "pending",
            "selected": False,
            "public_score": -1,
            "private_score": -1,
        }
    )
    # count the number of times user has submitted today
    todays_submissions = 0
    for sub in user_submission_info["submissions"]:
        if sub["date"] == todays_date:
            todays_submissions += 1
    # convert user_submission_info to BufferedIOBase file object
    user_submission_info_json = json.dumps(user_submission_info)
    user_submission_info_json_bytes = user_submission_info_json.encode("utf-8")
    user_submission_info_json_buffer = io.BytesIO(user_submission_info_json_bytes)
    api = HfApi()
    api.upload_file(
        path_or_fileobj=user_submission_info_json_buffer,
        path_in_repo=f"{user_id}.json",
        repo_id=config.COMPETITION_ID,
        repo_type="dataset",
        token=config.AUTOTRAIN_TOKEN,
    )
    return todays_submissions


def verify_submission(bytes_data):
    return True


def fetch_submissions(user_id):
    user_fname = hf_hub_download(
        repo_id=config.COMPETITION_ID,
        filename=f"{user_id}.json",
        use_auth_token=config.AUTOTRAIN_TOKEN,
        repo_type="dataset",
    )
    with open(user_fname, "r") as f:
        user_submission_info = json.load(f)
    return user_submission_info["submissions"]