|
import io |
|
import json |
|
from dataclasses import dataclass |
|
from datetime import datetime |
|
|
|
from huggingface_hub import HfApi, hf_hub_download |
|
|
|
|
|
@dataclass |
|
class CompetitionInfo: |
|
competition_id: str |
|
autotrain_token: str |
|
|
|
def __post_init__(self): |
|
config_fname = hf_hub_download( |
|
repo_id=self.competition_id, |
|
filename="conf.json", |
|
use_auth_token=self.autotrain_token, |
|
repo_type="dataset", |
|
) |
|
competition_desc = hf_hub_download( |
|
repo_id=self.competition_id, |
|
filename="COMPETITION_DESC.md", |
|
use_auth_token=self.autotrain_token, |
|
repo_type="dataset", |
|
) |
|
dataset_desc = hf_hub_download( |
|
repo_id=self.competition_id, |
|
filename="DATASET_DESC.md", |
|
use_auth_token=self.autotrain_token, |
|
repo_type="dataset", |
|
) |
|
self.config = self.load_config(config_fname) |
|
self.competition_desc = self.load_md(competition_desc) |
|
self.dataset_desc = self.load_md(dataset_desc) |
|
try: |
|
submission_desc = hf_hub_download( |
|
repo_id=self.competition_id, |
|
filename="SUBMISSION_DESC.md", |
|
use_auth_token=self.autotrain_token, |
|
repo_type="dataset", |
|
) |
|
self.submission_desc = self.load_md(submission_desc) |
|
except Exception: |
|
self.submission_desc = None |
|
|
|
try: |
|
rules_md = hf_hub_download( |
|
repo_id=self.competition_id, |
|
filename="RULES.md", |
|
use_auth_token=self.autotrain_token, |
|
repo_type="dataset", |
|
) |
|
self.rules_md = self.load_md(rules_md) |
|
except Exception: |
|
self.rules_md = None |
|
|
|
if self.config["EVAL_METRIC"] == "custom": |
|
if "SCORING_METRIC" not in self.config: |
|
raise ValueError( |
|
"For custom metrics, please provide a single SCORING_METRIC name in the competition config file: conf.json" |
|
) |
|
|
|
def load_md(self, md_path): |
|
with open(md_path, "r", encoding="utf-8") as f: |
|
md = f.read() |
|
return md |
|
|
|
def load_config(self, config_path): |
|
with open(config_path, "r", encoding="utf-8") as f: |
|
config = json.load(f) |
|
return config |
|
|
|
@property |
|
def submission_limit(self): |
|
return self.config["SUBMISSION_LIMIT"] |
|
|
|
@property |
|
def selection_limit(self): |
|
return self.config["SELECTION_LIMIT"] |
|
|
|
@property |
|
def end_date(self): |
|
e_d = self.config["END_DATE"] |
|
return datetime.strptime(e_d, "%Y-%m-%d") |
|
|
|
@property |
|
def eval_higher_is_better(self): |
|
hb = self.config["EVAL_HIGHER_IS_BETTER"] |
|
return True if int(hb) == 1 else False |
|
|
|
@property |
|
def competition_description(self): |
|
return self.competition_desc |
|
|
|
@property |
|
def submission_columns(self): |
|
return self.config["SUBMISSION_COLUMNS"].split(",") |
|
|
|
@property |
|
def submission_columns_raw(self): |
|
return self.config["SUBMISSION_COLUMNS"] |
|
|
|
@property |
|
def submission_description(self): |
|
return self.submission_desc |
|
|
|
@property |
|
def dataset_description(self): |
|
return self.dataset_desc |
|
|
|
@property |
|
def logo_url(self): |
|
return self.config["LOGO"] |
|
|
|
@property |
|
def competition_type(self): |
|
return self.config["COMPETITION_TYPE"].lower().strip() |
|
|
|
@property |
|
def metric(self): |
|
return self.config["EVAL_METRIC"] |
|
|
|
@property |
|
def submission_id_col(self): |
|
return self.config["SUBMISSION_ID_COLUMN"] |
|
|
|
@property |
|
def submission_cols(self): |
|
cols = self.config["SUBMISSION_COLUMNS"].split(",") |
|
cols = [c.strip() for c in cols] |
|
return cols |
|
|
|
@property |
|
def submission_rows(self): |
|
return self.config["SUBMISSION_ROWS"] |
|
|
|
@property |
|
def time_limit(self): |
|
return self.config["TIME_LIMIT"] |
|
|
|
@property |
|
def hardware(self): |
|
return self.config.get("HARDWARE", "cpu-basic") |
|
|
|
@property |
|
def dataset(self): |
|
return self.config.get("DATASET", "") |
|
|
|
@property |
|
def submission_filenames(self): |
|
return self.config.get("SUBMISSION_FILENAMES", ["submission.csv"]) |
|
|
|
@property |
|
def scoring_metric(self): |
|
if self.config["EVAL_METRIC"] == "custom": |
|
if "SCORING_METRIC" not in self.config: |
|
raise Exception("Please provide a single SCORING_METRIC in the competition config file: conf.json") |
|
if self.config["SCORING_METRIC"] is None: |
|
raise Exception("Please provide a single SCORING_METRIC in the competition config file: conf.json") |
|
return self.config["SCORING_METRIC"] |
|
return self.config["EVAL_METRIC"] |
|
|
|
@property |
|
def rules(self): |
|
return self.rules_md |
|
|
|
def _save_md(self, md, filename, api): |
|
md = io.BytesIO(md.encode()) |
|
api.upload_file( |
|
path_or_fileobj=md, |
|
path_in_repo=filename, |
|
repo_id=self.competition_id, |
|
repo_type="dataset", |
|
) |
|
|
|
def update_competition_info(self, config, markdowns, token): |
|
api = HfApi(token=token) |
|
conf_json = json.dumps(config, indent=4) |
|
conf_json_bytes = conf_json.encode("utf-8") |
|
conf_json_buffer = io.BytesIO(conf_json_bytes) |
|
api.upload_file( |
|
path_or_fileobj=conf_json_buffer, |
|
path_in_repo="conf.json", |
|
repo_id=self.competition_id, |
|
repo_type="dataset", |
|
) |
|
|
|
competition_desc = markdowns["competition_desc"] |
|
dataset_desc = markdowns["dataset_desc"] |
|
submission_desc = markdowns["submission_desc"] |
|
rules_md = markdowns["rules"] |
|
|
|
self._save_md(competition_desc, "COMPETITION_DESC.md", api) |
|
self._save_md(dataset_desc, "DATASET_DESC.md", api) |
|
self._save_md(submission_desc, "SUBMISSION_DESC.md", api) |
|
self._save_md(rules_md, "RULES.md", api) |
|
|