Abhishek Thakur
commited on
Commit
·
1094cbb
1
Parent(s):
936d8d9
working generic evaluation
Browse files- .dockerignore +146 -0
- Dockerfile +4 -7
- competitions/__init__.py +0 -9
- competitions/app.py +14 -2
- competitions/competitions.py +0 -184
- competitions/compute_metrics.py +58 -0
- competitions/evaluate.py +49 -0
- competitions/info.py +18 -0
- competitions/params.py +30 -0
- competitions/runner.py +88 -0
- competitions/submissions.py +4 -5
- competitions/templates/index.html +7 -4
- competitions/utils.py +105 -26
.dockerignore
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Local stuff
|
2 |
+
.DS_Store
|
3 |
+
.vscode/
|
4 |
+
.vim/
|
5 |
+
flagged/
|
6 |
+
*.csv
|
7 |
+
|
8 |
+
# Byte-compiled / optimized / DLL files
|
9 |
+
__pycache__/
|
10 |
+
*.py[cod]
|
11 |
+
*$py.class
|
12 |
+
|
13 |
+
# C extensions
|
14 |
+
*.so
|
15 |
+
|
16 |
+
# Distribution / packaging
|
17 |
+
.Python
|
18 |
+
build/
|
19 |
+
develop-eggs/
|
20 |
+
dist/
|
21 |
+
downloads/
|
22 |
+
eggs/
|
23 |
+
.eggs/
|
24 |
+
lib/
|
25 |
+
lib64/
|
26 |
+
parts/
|
27 |
+
sdist/
|
28 |
+
var/
|
29 |
+
wheels/
|
30 |
+
pip-wheel-metadata/
|
31 |
+
share/python-wheels/
|
32 |
+
*.egg-info/
|
33 |
+
.installed.cfg
|
34 |
+
*.egg
|
35 |
+
MANIFEST
|
36 |
+
|
37 |
+
# PyInstaller
|
38 |
+
# Usually these files are written by a python script from a template
|
39 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
40 |
+
*.manifest
|
41 |
+
*.spec
|
42 |
+
|
43 |
+
# Installer logs
|
44 |
+
pip-log.txt
|
45 |
+
pip-delete-this-directory.txt
|
46 |
+
|
47 |
+
# Unit test / coverage reports
|
48 |
+
htmlcov/
|
49 |
+
.tox/
|
50 |
+
.nox/
|
51 |
+
.coverage
|
52 |
+
.coverage.*
|
53 |
+
.cache
|
54 |
+
nosetests.xml
|
55 |
+
coverage.xml
|
56 |
+
*.cover
|
57 |
+
*.py,cover
|
58 |
+
.hypothesis/
|
59 |
+
.pytest_cache/
|
60 |
+
|
61 |
+
# Translations
|
62 |
+
*.mo
|
63 |
+
*.pot
|
64 |
+
|
65 |
+
# Django stuff:
|
66 |
+
*.log
|
67 |
+
local_settings.py
|
68 |
+
db.sqlite3
|
69 |
+
db.sqlite3-journal
|
70 |
+
|
71 |
+
# Flask stuff:
|
72 |
+
instance/
|
73 |
+
.webassets-cache
|
74 |
+
|
75 |
+
# Scrapy stuff:
|
76 |
+
.scrapy
|
77 |
+
|
78 |
+
# Sphinx documentation
|
79 |
+
docs/_build/
|
80 |
+
|
81 |
+
# PyBuilder
|
82 |
+
target/
|
83 |
+
|
84 |
+
# Jupyter Notebook
|
85 |
+
.ipynb_checkpoints
|
86 |
+
|
87 |
+
# IPython
|
88 |
+
profile_default/
|
89 |
+
ipython_config.py
|
90 |
+
|
91 |
+
# pyenv
|
92 |
+
.python-version
|
93 |
+
|
94 |
+
# pipenv
|
95 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
96 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
97 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
98 |
+
# install all needed dependencies.
|
99 |
+
#Pipfile.lock
|
100 |
+
|
101 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
102 |
+
__pypackages__/
|
103 |
+
|
104 |
+
# Celery stuff
|
105 |
+
celerybeat-schedule
|
106 |
+
celerybeat.pid
|
107 |
+
|
108 |
+
# SageMath parsed files
|
109 |
+
*.sage.py
|
110 |
+
|
111 |
+
# Environments
|
112 |
+
*.env
|
113 |
+
.env
|
114 |
+
.venv
|
115 |
+
env/
|
116 |
+
venv/
|
117 |
+
ENV/
|
118 |
+
env.bak/
|
119 |
+
venv.bak/
|
120 |
+
|
121 |
+
# Spyder project settings
|
122 |
+
.spyderproject
|
123 |
+
.spyproject
|
124 |
+
|
125 |
+
# Rope project settings
|
126 |
+
.ropeproject
|
127 |
+
|
128 |
+
# mkdocs documentation
|
129 |
+
/site
|
130 |
+
|
131 |
+
# mypy
|
132 |
+
.mypy_cache/
|
133 |
+
.dmypy.json
|
134 |
+
dmypy.json
|
135 |
+
|
136 |
+
# Pyre type checker
|
137 |
+
.pyre/
|
138 |
+
|
139 |
+
# Terraform stuff
|
140 |
+
*.tfstate
|
141 |
+
*.tfstate.backup
|
142 |
+
.terraform**
|
143 |
+
**.tfvars
|
144 |
+
|
145 |
+
# Alembic / database artifcats
|
146 |
+
**.db
|
Dockerfile
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
-
FROM
|
2 |
|
3 |
ENV DEBIAN_FRONTEND=noninteractive \
|
4 |
TZ=UTC
|
5 |
|
6 |
-
RUN pip install pip==23.
|
7 |
|
8 |
WORKDIR /app
|
9 |
RUN mkdir -p /app/.cache
|
@@ -14,10 +14,6 @@ ENV HOME=/app
|
|
14 |
|
15 |
ENV PYTHONPATH=$HOME/app \
|
16 |
PYTHONUNBUFFERED=1 \
|
17 |
-
GRADIO_ALLOW_FLAGGING=never \
|
18 |
-
GRADIO_NUM_PORTS=1 \
|
19 |
-
GRADIO_SERVER_NAME=0.0.0.0 \
|
20 |
-
GRADIO_THEME=huggingface \
|
21 |
SYSTEM=spaces
|
22 |
|
23 |
|
@@ -26,7 +22,8 @@ RUN wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh \
|
|
26 |
&& rm -f Miniconda3-latest-Linux-x86_64.sh
|
27 |
ENV PATH /app/miniconda/bin:$PATH
|
28 |
|
29 |
-
RUN conda create -p /app/env -y python=3.
|
|
|
30 |
|
31 |
|
32 |
SHELL ["conda", "run","--no-capture-output", "-p","/app/env", "/bin/bash", "-c"]
|
|
|
1 |
+
FROM ubuntu:22.04
|
2 |
|
3 |
ENV DEBIAN_FRONTEND=noninteractive \
|
4 |
TZ=UTC
|
5 |
|
6 |
+
RUN pip install pip==23.3.2
|
7 |
|
8 |
WORKDIR /app
|
9 |
RUN mkdir -p /app/.cache
|
|
|
14 |
|
15 |
ENV PYTHONPATH=$HOME/app \
|
16 |
PYTHONUNBUFFERED=1 \
|
|
|
|
|
|
|
|
|
17 |
SYSTEM=spaces
|
18 |
|
19 |
|
|
|
22 |
&& rm -f Miniconda3-latest-Linux-x86_64.sh
|
23 |
ENV PATH /app/miniconda/bin:$PATH
|
24 |
|
25 |
+
RUN conda create -p /app/env -y python=3.10 \
|
26 |
+
&& conda clean -ya
|
27 |
|
28 |
|
29 |
SHELL ["conda", "run","--no-capture-output", "-p","/app/env", "/bin/bash", "-c"]
|
competitions/__init__.py
CHANGED
@@ -1,7 +1,5 @@
|
|
1 |
import os
|
2 |
|
3 |
-
from .info import CompetitionInfo
|
4 |
-
|
5 |
|
6 |
__version__ = "0.1.1"
|
7 |
|
@@ -9,10 +7,3 @@ MOONLANDING_URL = os.getenv("MOONLANDING_URL", "https://huggingface.co")
|
|
9 |
COMPETITION_ID = os.getenv("COMPETITION_ID")
|
10 |
AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME")
|
11 |
AUTOTRAIN_TOKEN = os.getenv("AUTOTRAIN_TOKEN")
|
12 |
-
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API", "https://api.autotrain.huggingface.co")
|
13 |
-
BOT_TOKEN = os.getenv("BOT_TOKEN")
|
14 |
-
|
15 |
-
if COMPETITION_ID is not None:
|
16 |
-
competition_info = CompetitionInfo(competition_id=COMPETITION_ID, autotrain_token=AUTOTRAIN_TOKEN)
|
17 |
-
else:
|
18 |
-
competition_info = None
|
|
|
1 |
import os
|
2 |
|
|
|
|
|
3 |
|
4 |
__version__ = "0.1.1"
|
5 |
|
|
|
7 |
COMPETITION_ID = os.getenv("COMPETITION_ID")
|
8 |
AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME")
|
9 |
AUTOTRAIN_TOKEN = os.getenv("AUTOTRAIN_TOKEN")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
competitions/app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import os
|
|
|
2 |
|
3 |
from fastapi import FastAPI, File, Form, Request, UploadFile
|
4 |
from fastapi.responses import HTMLResponse, JSONResponse
|
@@ -8,12 +9,14 @@ from pydantic import BaseModel
|
|
8 |
|
9 |
from competitions.info import CompetitionInfo
|
10 |
from competitions.leaderboard import Leaderboard
|
|
|
11 |
from competitions.submissions import Submissions
|
12 |
|
13 |
|
14 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
15 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
16 |
COMPETITION_ID = os.getenv("COMPETITION_ID")
|
|
|
17 |
COMP_INFO = CompetitionInfo(competition_id=COMPETITION_ID, autotrain_token=HF_TOKEN)
|
18 |
|
19 |
|
@@ -21,6 +24,15 @@ class User(BaseModel):
|
|
21 |
user_token: str
|
22 |
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
app = FastAPI()
|
25 |
static_path = os.path.join(BASE_DIR, "static")
|
26 |
app.mount("/static", StaticFiles(directory=static_path), name="static")
|
@@ -107,9 +119,9 @@ async def new_submission(
|
|
107 |
token=HF_TOKEN,
|
108 |
)
|
109 |
if COMP_INFO.competition_type == "generic":
|
110 |
-
resp = sub.new_submission(token, submission_file)
|
111 |
return {"response": f"Success! You have {resp} submissions remaining today."}
|
112 |
elif COMP_INFO.competition_type == "code":
|
113 |
-
resp = sub.new_submission(token, hub_model)
|
114 |
return {"response": f"Success! You have {resp} submissions remaining today."}
|
115 |
return {"response": "Invalid competition type"}
|
|
|
1 |
import os
|
2 |
+
import threading
|
3 |
|
4 |
from fastapi import FastAPI, File, Form, Request, UploadFile
|
5 |
from fastapi.responses import HTMLResponse, JSONResponse
|
|
|
9 |
|
10 |
from competitions.info import CompetitionInfo
|
11 |
from competitions.leaderboard import Leaderboard
|
12 |
+
from competitions.runner import JobRunner
|
13 |
from competitions.submissions import Submissions
|
14 |
|
15 |
|
16 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
17 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
18 |
COMPETITION_ID = os.getenv("COMPETITION_ID")
|
19 |
+
OUTPUT_PATH = os.getenv("OUTPUT_PATH", "/tmp/model")
|
20 |
COMP_INFO = CompetitionInfo(competition_id=COMPETITION_ID, autotrain_token=HF_TOKEN)
|
21 |
|
22 |
|
|
|
24 |
user_token: str
|
25 |
|
26 |
|
27 |
+
def run_job_runner():
|
28 |
+
job_runner = JobRunner(token=HF_TOKEN, competition_info=COMP_INFO, output_path=OUTPUT_PATH)
|
29 |
+
job_runner.run()
|
30 |
+
|
31 |
+
|
32 |
+
thread = threading.Thread(target=run_job_runner)
|
33 |
+
thread.start()
|
34 |
+
|
35 |
+
|
36 |
app = FastAPI()
|
37 |
static_path = os.path.join(BASE_DIR, "static")
|
38 |
app.mount("/static", StaticFiles(directory=static_path), name="static")
|
|
|
119 |
token=HF_TOKEN,
|
120 |
)
|
121 |
if COMP_INFO.competition_type == "generic":
|
122 |
+
resp = sub.new_submission(token, submission_file, submission_comment)
|
123 |
return {"response": f"Success! You have {resp} submissions remaining today."}
|
124 |
elif COMP_INFO.competition_type == "code":
|
125 |
+
resp = sub.new_submission(token, hub_model, submission_comment)
|
126 |
return {"response": f"Success! You have {resp} submissions remaining today."}
|
127 |
return {"response": "Invalid competition type"}
|
competitions/competitions.py
DELETED
@@ -1,184 +0,0 @@
|
|
1 |
-
from datetime import datetime
|
2 |
-
from functools import partial
|
3 |
-
|
4 |
-
import gradio as gr
|
5 |
-
|
6 |
-
from . import AUTOTRAIN_BACKEND_API, AUTOTRAIN_TOKEN, AUTOTRAIN_USERNAME, COMPETITION_ID, competition_info
|
7 |
-
from .errors import PastDeadlineError, SubmissionError, SubmissionLimitError
|
8 |
-
from .leaderboard import Leaderboard
|
9 |
-
from .submissions import Submissions
|
10 |
-
from .text import (
|
11 |
-
NO_SUBMISSIONS,
|
12 |
-
SUBMISSION_LIMIT_REACHED,
|
13 |
-
SUBMISSION_SELECTION_TEXT,
|
14 |
-
SUBMISSION_SUCCESS,
|
15 |
-
SUBMISSION_TEXT,
|
16 |
-
)
|
17 |
-
|
18 |
-
|
19 |
-
leaderboard = Leaderboard(
|
20 |
-
end_date=competition_info.end_date,
|
21 |
-
eval_higher_is_better=competition_info.eval_higher_is_better,
|
22 |
-
max_selected_submissions=competition_info.selection_limit,
|
23 |
-
competition_id=COMPETITION_ID,
|
24 |
-
autotrain_token=AUTOTRAIN_TOKEN,
|
25 |
-
)
|
26 |
-
|
27 |
-
submissions = Submissions(
|
28 |
-
competition_id=competition_info.competition_id,
|
29 |
-
submission_limit=competition_info.submission_limit,
|
30 |
-
end_date=competition_info.end_date,
|
31 |
-
autotrain_username=AUTOTRAIN_USERNAME,
|
32 |
-
autotrain_token=AUTOTRAIN_TOKEN,
|
33 |
-
autotrain_backend_api=AUTOTRAIN_BACKEND_API,
|
34 |
-
)
|
35 |
-
|
36 |
-
|
37 |
-
def _new_submission(user_token, submission_file):
|
38 |
-
try:
|
39 |
-
remaining_subs = submissions.new_submission(user_token, submission_file)
|
40 |
-
return SUBMISSION_SUCCESS.format(remaining_subs)
|
41 |
-
except SubmissionLimitError:
|
42 |
-
return SUBMISSION_LIMIT_REACHED
|
43 |
-
except SubmissionError:
|
44 |
-
return "Something went wrong. Please try again later."
|
45 |
-
|
46 |
-
|
47 |
-
def _my_submissions(user_token):
|
48 |
-
df, failed_df = submissions.my_submissions(user_token)
|
49 |
-
if len(df) == 0:
|
50 |
-
return [
|
51 |
-
gr.Markdown.update(visible=True, value=NO_SUBMISSIONS),
|
52 |
-
gr.DataFrame.update(visible=False),
|
53 |
-
gr.DataFrame.update(
|
54 |
-
visible=True if len(failed_df) > 0 else False, value=failed_df if len(failed_df) > 0 else None
|
55 |
-
),
|
56 |
-
gr.TextArea.update(visible=False),
|
57 |
-
gr.Button.update(visible=False),
|
58 |
-
]
|
59 |
-
selected_submission_ids = df[df["selected"] == True]["submission_id"].values.tolist()
|
60 |
-
failed_selected_submission_ids = failed_df[failed_df["selected"] == True]["submission_id"].values.tolist()
|
61 |
-
selected_submission_ids.extend(failed_selected_submission_ids)
|
62 |
-
if len(selected_submission_ids) > 0:
|
63 |
-
return [
|
64 |
-
gr.Markdown.update(visible=True),
|
65 |
-
gr.DataFrame.update(visible=True, value=df),
|
66 |
-
gr.DataFrame.update(
|
67 |
-
visible=True if len(failed_df) > 0 else False, value=failed_df if len(failed_df) > 0 else None
|
68 |
-
),
|
69 |
-
gr.TextArea.update(visible=True, value="\n".join(selected_submission_ids), interactive=True),
|
70 |
-
gr.Button.update(visible=True),
|
71 |
-
]
|
72 |
-
return [
|
73 |
-
gr.Markdown.update(visible=False),
|
74 |
-
gr.DataFrame.update(visible=True, value=df),
|
75 |
-
gr.DataFrame.update(
|
76 |
-
visible=True if len(failed_df) > 0 else False, value=failed_df if len(failed_df) > 0 else None
|
77 |
-
),
|
78 |
-
gr.TextArea.update(visible=True, interactive=True),
|
79 |
-
gr.Button.update(visible=True),
|
80 |
-
]
|
81 |
-
|
82 |
-
|
83 |
-
def _update_selected_submissions(user_token, submission_ids):
|
84 |
-
submission_ids = submission_ids.split("\n")
|
85 |
-
submission_ids = [sid.strip() for sid in submission_ids]
|
86 |
-
submission_ids = [sid for sid in submission_ids if len(sid) > 0]
|
87 |
-
if len(submission_ids) > competition_info.selection_limit:
|
88 |
-
raise ValueError(
|
89 |
-
f"You can select only {competition_info.selection_limit} submissions. You selected {len(submission_ids)} submissions."
|
90 |
-
)
|
91 |
-
try:
|
92 |
-
submissions.update_selected_submissions(user_token, submission_ids)
|
93 |
-
except PastDeadlineError:
|
94 |
-
return [
|
95 |
-
gr.Markdown.update(visible=True, value="You can no longer select submissions after the deadline."),
|
96 |
-
gr.DataFrame.update(visible=False),
|
97 |
-
gr.DataFrame.update(visible=False),
|
98 |
-
gr.TextArea.update(visible=False),
|
99 |
-
gr.Button.update(visible=False),
|
100 |
-
]
|
101 |
-
return _my_submissions(user_token)
|
102 |
-
|
103 |
-
|
104 |
-
def _fetch_leaderboard(private):
|
105 |
-
if private:
|
106 |
-
current_date_time = datetime.now()
|
107 |
-
if current_date_time < competition_info.end_date:
|
108 |
-
return [
|
109 |
-
gr.DataFrame.update(visible=False),
|
110 |
-
gr.Markdown.update(
|
111 |
-
visible=True, value=f"Private Leaderboard will be available on {competition_info.end_date} UTC."
|
112 |
-
),
|
113 |
-
]
|
114 |
-
df = leaderboard.fetch(private=private)
|
115 |
-
# df["name"] = df["name"].apply(make_clickable_user)
|
116 |
-
# df.to_csv("public_leaderboard.csv" if not private else "private_leaderboard.csv", index=False)
|
117 |
-
num_teams = len(df)
|
118 |
-
return [
|
119 |
-
gr.DataFrame.update(visible=True, value=df),
|
120 |
-
gr.Markdown.update(visible=True, value=f"Number of teams: {num_teams}"),
|
121 |
-
]
|
122 |
-
|
123 |
-
|
124 |
-
with gr.Blocks(css=".tabitem {padding: 25px}") as demo:
|
125 |
-
with gr.Tabs() as tab_container:
|
126 |
-
with gr.TabItem("Overview", id="overview"):
|
127 |
-
gr.Markdown(f"{competition_info.competition_description}")
|
128 |
-
with gr.TabItem("Dataset", id="dataset_tab") as dataset_tab:
|
129 |
-
gr.Markdown(f"{competition_info.dataset_description}")
|
130 |
-
with gr.TabItem("Public Leaderboard", id="public_leaderboard") as public_leaderboard:
|
131 |
-
output_text_public = gr.Markdown()
|
132 |
-
output_df_public = gr.DataFrame(row_count=(50, "dynamic"), visible=False)
|
133 |
-
with gr.TabItem("Private Leaderboard", id="private_leaderboard") as private_leaderboard:
|
134 |
-
output_text_private = gr.Markdown()
|
135 |
-
output_df_private = gr.DataFrame(row_count=(50, "dynamic"), visible=False)
|
136 |
-
with gr.TabItem("New Submission", id="new_submission"):
|
137 |
-
if competition_info.submission_desc is None:
|
138 |
-
gr.Markdown(SUBMISSION_TEXT.format(competition_info.submission_limit))
|
139 |
-
else:
|
140 |
-
gr.Markdown(f"{competition_info.submission_desc}")
|
141 |
-
user_token = gr.Textbox(
|
142 |
-
max_lines=1, value="", label="Please enter your Hugging Face token (read only)", type="password"
|
143 |
-
)
|
144 |
-
uploaded_file = gr.File()
|
145 |
-
output_text = gr.Markdown(visible=True, show_label=False)
|
146 |
-
new_sub_button = gr.Button("Upload Submission")
|
147 |
-
new_sub_button.click(
|
148 |
-
fn=_new_submission,
|
149 |
-
inputs=[user_token, uploaded_file],
|
150 |
-
outputs=[output_text],
|
151 |
-
)
|
152 |
-
with gr.TabItem("My Submissions", id="my_submissions"):
|
153 |
-
gr.Markdown(SUBMISSION_SELECTION_TEXT.format(competition_info.selection_limit))
|
154 |
-
user_token = gr.Textbox(
|
155 |
-
max_lines=1, value="", label="Please enter your Hugging Face token (read only)", type="password"
|
156 |
-
)
|
157 |
-
output_text = gr.Markdown(visible=True, show_label=False)
|
158 |
-
output_df = gr.DataFrame(visible=False, label="Succesful Submissions")
|
159 |
-
failed_df = gr.DataFrame(visible=False, label="Failed Submissions")
|
160 |
-
selected_submissions = gr.TextArea(
|
161 |
-
visible=False,
|
162 |
-
label="Selected Submissions (one submission id per line)",
|
163 |
-
max_lines=competition_info.selection_limit,
|
164 |
-
lines=competition_info.selection_limit,
|
165 |
-
)
|
166 |
-
update_selected_submissions = gr.Button("Update Selected Submissions", visible=False)
|
167 |
-
my_subs_button = gr.Button("Fetch Submissions")
|
168 |
-
my_subs_button.click(
|
169 |
-
fn=_my_submissions,
|
170 |
-
inputs=[user_token],
|
171 |
-
outputs=[output_text, output_df, failed_df, selected_submissions, update_selected_submissions],
|
172 |
-
)
|
173 |
-
update_selected_submissions.click(
|
174 |
-
fn=_update_selected_submissions,
|
175 |
-
inputs=[user_token, selected_submissions],
|
176 |
-
outputs=[output_text, output_df, failed_df, selected_submissions, update_selected_submissions],
|
177 |
-
)
|
178 |
-
|
179 |
-
fetch_lb_partial = partial(_fetch_leaderboard, private=False)
|
180 |
-
public_leaderboard.select(fetch_lb_partial, inputs=[], outputs=[output_df_public, output_text_public])
|
181 |
-
fetch_lb_partial_private = partial(_fetch_leaderboard, private=True)
|
182 |
-
private_leaderboard.select(
|
183 |
-
fetch_lb_partial_private, inputs=[], outputs=[output_df_private, output_text_private]
|
184 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
competitions/compute_metrics.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
from sklearn import metrics
|
6 |
+
|
7 |
+
|
8 |
+
def compute_metrics(params):
|
9 |
+
solution_file = hf_hub_download(
|
10 |
+
repo_id=params.competition_id,
|
11 |
+
filename="solution.csv",
|
12 |
+
token=params.token,
|
13 |
+
repo_type="dataset",
|
14 |
+
)
|
15 |
+
|
16 |
+
solution_df = pd.read_csv(solution_file)
|
17 |
+
|
18 |
+
submission_filename = f"submissions/{params.user_id}-{params.submission_id}.csv"
|
19 |
+
submission_file = hf_hub_download(
|
20 |
+
repo_id=params.competition_id,
|
21 |
+
filename=submission_filename,
|
22 |
+
token=params.token,
|
23 |
+
repo_type="dataset",
|
24 |
+
)
|
25 |
+
submission_df = pd.read_csv(submission_file)
|
26 |
+
|
27 |
+
public_ids = solution_df[solution_df.split == "public"][params.submission_id_col].values
|
28 |
+
private_ids = solution_df[solution_df.split == "private"][params.submission_id_col].values
|
29 |
+
|
30 |
+
public_solution_df = solution_df[solution_df[params.submission_id_col].isin(public_ids)]
|
31 |
+
public_submission_df = submission_df[submission_df[params.submission_id_col].isin(public_ids)]
|
32 |
+
|
33 |
+
private_solution_df = solution_df[solution_df[params.submission_id_col].isin(private_ids)]
|
34 |
+
private_submission_df = submission_df[submission_df[params.submission_id_col].isin(private_ids)]
|
35 |
+
|
36 |
+
public_solution_df = public_solution_df.sort_values(params.submission_id_col).reset_index(drop=True)
|
37 |
+
public_submission_df = public_submission_df.sort_values(params.submission_id_col).reset_index(drop=True)
|
38 |
+
|
39 |
+
private_solution_df = private_solution_df.sort_values(params.submission_id_col).reset_index(drop=True)
|
40 |
+
private_submission_df = private_submission_df.sort_values(params.submission_id_col).reset_index(drop=True)
|
41 |
+
|
42 |
+
if params.metric == "f1-macro":
|
43 |
+
_metric = partial(metrics.f1_score, average="macro")
|
44 |
+
target_cols = [col for col in solution_df.columns if col not in [params.submission_id_col, "split"]]
|
45 |
+
public_score = _metric(public_solution_df[target_cols], public_submission_df[target_cols])
|
46 |
+
private_score = _metric(private_solution_df[target_cols], private_submission_df[target_cols])
|
47 |
+
else:
|
48 |
+
_metric = getattr(metrics, params.metric)
|
49 |
+
target_cols = [col for col in solution_df.columns if col not in [params.submission_id_col, "split"]]
|
50 |
+
public_score = _metric(private_solution_df[target_cols], public_submission_df[target_cols])
|
51 |
+
private_score = _metric(private_solution_df[target_cols], private_submission_df[target_cols])
|
52 |
+
|
53 |
+
# scores can also be dictionaries for multiple metrics
|
54 |
+
evaluation = {
|
55 |
+
"public_score": public_score,
|
56 |
+
"private_score": private_score,
|
57 |
+
}
|
58 |
+
return evaluation
|
competitions/evaluate.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
|
4 |
+
from huggingface_hub import snapshot_download
|
5 |
+
from loguru import logger
|
6 |
+
|
7 |
+
from competitions import utils
|
8 |
+
from competitions.compute_metrics import compute_metrics
|
9 |
+
from competitions.params import EvalParams
|
10 |
+
|
11 |
+
|
12 |
+
def parse_args():
|
13 |
+
parser = argparse.ArgumentParser()
|
14 |
+
parser.add_argument("--config", type=str, required=True)
|
15 |
+
return parser.parse_args()
|
16 |
+
|
17 |
+
|
18 |
+
def generate_submission_file(params):
|
19 |
+
logger.info("Downloading submission dataset")
|
20 |
+
snapshot_download(
|
21 |
+
repo_id=params.data_path,
|
22 |
+
local_dir=params.output_path,
|
23 |
+
token=params.token,
|
24 |
+
repo_type="dataset",
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
@utils.monitor
|
29 |
+
def run(params):
|
30 |
+
if isinstance(params, dict):
|
31 |
+
params = EvalParams(**params)
|
32 |
+
|
33 |
+
utils.update_submission_status(params, "processing")
|
34 |
+
|
35 |
+
if params.competition_type == "code":
|
36 |
+
generate_submission_file(params)
|
37 |
+
|
38 |
+
public_score, private_score = compute_metrics(params)
|
39 |
+
|
40 |
+
utils.update_submission_score(params, public_score, private_score)
|
41 |
+
utils.update_submission_status(params, "success")
|
42 |
+
utils.pause_space(params)
|
43 |
+
|
44 |
+
|
45 |
+
if __name__ == "__main__":
|
46 |
+
args = parse_args()
|
47 |
+
_params = json.load(open(args.config, encoding="utf-8"))
|
48 |
+
_params = EvalParams(**_params)
|
49 |
+
run(_params)
|
competitions/info.py
CHANGED
@@ -107,3 +107,21 @@ class CompetitionInfo:
|
|
107 |
@property
|
108 |
def competition_type(self):
|
109 |
return self.config["COMPETITION_TYPE"].lower().strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
@property
|
108 |
def competition_type(self):
|
109 |
return self.config["COMPETITION_TYPE"].lower().strip()
|
110 |
+
|
111 |
+
@property
|
112 |
+
def metric(self):
|
113 |
+
return self.config["EVAL_METRIC"]
|
114 |
+
|
115 |
+
@property
|
116 |
+
def submission_id_col(self):
|
117 |
+
return self.config["SUBMISSION_ID_COLUMN"]
|
118 |
+
|
119 |
+
@property
|
120 |
+
def submission_cols(self):
|
121 |
+
cols = self.config["SUBMISSION_COLUMNS"].split(",")
|
122 |
+
cols = [c.strip() for c in cols]
|
123 |
+
return cols
|
124 |
+
|
125 |
+
@property
|
126 |
+
def submission_rows(self):
|
127 |
+
return self.config["SUBMISSION_ROWS"]
|
competitions/params.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
from pydantic import BaseModel
|
5 |
+
|
6 |
+
|
7 |
+
class EvalParams(BaseModel):
|
8 |
+
competition_id: str
|
9 |
+
competition_type: str
|
10 |
+
metric: str
|
11 |
+
token: str
|
12 |
+
user_id: str
|
13 |
+
submission_id: str
|
14 |
+
submission_id_col: str
|
15 |
+
submission_cols: List[str]
|
16 |
+
submission_rows: int
|
17 |
+
output_path: str
|
18 |
+
|
19 |
+
class Config:
|
20 |
+
protected_namespaces = ()
|
21 |
+
|
22 |
+
def save(self, output_dir):
|
23 |
+
"""
|
24 |
+
Save parameters to a json file.
|
25 |
+
"""
|
26 |
+
os.makedirs(output_dir, exist_ok=True)
|
27 |
+
path = os.path.join(output_dir, "params.json")
|
28 |
+
# save formatted json
|
29 |
+
with open(path, "w", encoding="utf-8") as f:
|
30 |
+
f.write(self.model_dump_json(indent=4))
|
competitions/runner.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import time
|
5 |
+
from dataclasses import dataclass
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
from huggingface_hub import snapshot_download
|
9 |
+
from loguru import logger
|
10 |
+
|
11 |
+
from competitions.info import CompetitionInfo
|
12 |
+
from competitions.utils import run_evaluation
|
13 |
+
|
14 |
+
|
15 |
+
@dataclass
|
16 |
+
class JobRunner:
|
17 |
+
competition_info: CompetitionInfo
|
18 |
+
token: str
|
19 |
+
output_path: str
|
20 |
+
|
21 |
+
def __post_init__(self):
|
22 |
+
self.competition_id = self.competition_info.competition_id
|
23 |
+
self.competition_type = self.competition_info.competition_type
|
24 |
+
self.metric = self.competition_info.metric
|
25 |
+
self.submission_id_col = self.competition_info.submission_id_col
|
26 |
+
self.submission_cols = self.competition_info.submission_cols
|
27 |
+
self.submission_rows = self.competition_info.submission_rows
|
28 |
+
|
29 |
+
def get_pending_subs(self):
|
30 |
+
user_jsons = snapshot_download(
|
31 |
+
repo_id=self.competition_id,
|
32 |
+
allow_patterns="submission_info/*.json",
|
33 |
+
token=self.token,
|
34 |
+
repo_type="dataset",
|
35 |
+
)
|
36 |
+
user_jsons = glob.glob(os.path.join(user_jsons, "submission_info/*.json"))
|
37 |
+
pending_submissions = []
|
38 |
+
for _json in user_jsons:
|
39 |
+
_json = json.load(open(_json, "r", encoding="utf-8"))
|
40 |
+
user_id = _json["id"]
|
41 |
+
for sub in _json["submissions"]:
|
42 |
+
# if sub["status"] == "pending":
|
43 |
+
pending_submissions.append(
|
44 |
+
{
|
45 |
+
"user_id": user_id,
|
46 |
+
"submission_id": sub["submission_id"],
|
47 |
+
"date": sub["date"],
|
48 |
+
"time": sub["time"],
|
49 |
+
}
|
50 |
+
)
|
51 |
+
if len(pending_submissions) == 0:
|
52 |
+
logger.info("No pending submissions.")
|
53 |
+
return None
|
54 |
+
logger.info(f"Found {len(pending_submissions)} pending submissions.")
|
55 |
+
pending_submissions = pd.DataFrame(pending_submissions)
|
56 |
+
pending_submissions = pending_submissions.sort_values(by=["date", "time"])
|
57 |
+
pending_submissions = pending_submissions.reset_index(drop=True)
|
58 |
+
return pending_submissions
|
59 |
+
|
60 |
+
def run_local(self, pending_submissions):
|
61 |
+
for _, row in pending_submissions.iterrows():
|
62 |
+
user_id = row["user_id"]
|
63 |
+
submission_id = row["submission_id"]
|
64 |
+
eval_params = {
|
65 |
+
"competition_id": self.competition_id,
|
66 |
+
"competition_type": self.competition_type,
|
67 |
+
"metric": self.metric,
|
68 |
+
"token": self.token,
|
69 |
+
"user_id": user_id,
|
70 |
+
"submission_id": submission_id,
|
71 |
+
"submission_id_col": self.submission_id_col,
|
72 |
+
"submission_cols": self.submission_cols,
|
73 |
+
"submission_rows": self.submission_rows,
|
74 |
+
"output_path": self.output_path,
|
75 |
+
}
|
76 |
+
eval_params = json.dumps(eval_params)
|
77 |
+
eval_pid = run_evaluation(eval_params, local=True, wait=True)
|
78 |
+
logger.info(f"New evaluation process started with pid {eval_pid}.")
|
79 |
+
|
80 |
+
def run(self):
|
81 |
+
while True:
|
82 |
+
pending_submissions = self.get_pending_subs()
|
83 |
+
if pending_submissions is None:
|
84 |
+
time.sleep(5)
|
85 |
+
continue
|
86 |
+
if self.competition_type == "generic":
|
87 |
+
self.run_local(pending_submissions)
|
88 |
+
time.sleep(5)
|
competitions/submissions.py
CHANGED
@@ -22,7 +22,7 @@ class Submissions:
|
|
22 |
|
23 |
def __post_init__(self):
|
24 |
self.public_sub_columns = [
|
25 |
-
"
|
26 |
"submission_id",
|
27 |
"public_score",
|
28 |
"submission_comment",
|
@@ -30,7 +30,7 @@ class Submissions:
|
|
30 |
"status",
|
31 |
]
|
32 |
self.private_sub_columns = [
|
33 |
-
"
|
34 |
"submission_id",
|
35 |
"public_score",
|
36 |
"private_score",
|
@@ -326,16 +326,15 @@ class Submissions:
|
|
326 |
raise SubmissionLimitError("Submission limit reached")
|
327 |
|
328 |
logger.info(type(uploaded_file))
|
|
|
329 |
|
330 |
-
with open(uploaded_file.name, "rb") as f:
|
331 |
-
bytes_data = f.read()
|
332 |
# verify file is valid
|
333 |
if not self._verify_submission(bytes_data):
|
334 |
raise SubmissionError("Invalid submission file")
|
335 |
else:
|
336 |
user_id = user_info["id"]
|
337 |
submission_id = str(uuid.uuid4())
|
338 |
-
file_extension = uploaded_file.
|
339 |
# upload file to hf hub
|
340 |
api = HfApi(token=self.token)
|
341 |
api.upload_file(
|
|
|
22 |
|
23 |
def __post_init__(self):
|
24 |
self.public_sub_columns = [
|
25 |
+
"datetime",
|
26 |
"submission_id",
|
27 |
"public_score",
|
28 |
"submission_comment",
|
|
|
30 |
"status",
|
31 |
]
|
32 |
self.private_sub_columns = [
|
33 |
+
"datetime",
|
34 |
"submission_id",
|
35 |
"public_score",
|
36 |
"private_score",
|
|
|
326 |
raise SubmissionLimitError("Submission limit reached")
|
327 |
|
328 |
logger.info(type(uploaded_file))
|
329 |
+
bytes_data = uploaded_file.file.read()
|
330 |
|
|
|
|
|
331 |
# verify file is valid
|
332 |
if not self._verify_submission(bytes_data):
|
333 |
raise SubmissionError("Invalid submission file")
|
334 |
else:
|
335 |
user_id = user_info["id"]
|
336 |
submission_id = str(uuid.uuid4())
|
337 |
+
file_extension = uploaded_file.filename.split(".")[-1]
|
338 |
# upload file to hf hub
|
339 |
api = HfApi(token=self.token)
|
340 |
api.upload_file(
|
competitions/templates/index.html
CHANGED
@@ -313,10 +313,11 @@
|
|
313 |
</div>
|
314 |
{% endif %}
|
315 |
<div class="form-group mt-2">
|
316 |
-
<label for="
|
|
|
317 |
</label>
|
318 |
-
<textarea id="
|
319 |
-
placeholder=""></textarea>
|
320 |
</div>
|
321 |
<div class="form-actions mt-6">
|
322 |
<button data-modal-hide="submission-modal" type="button"
|
@@ -356,10 +357,12 @@
|
|
356 |
return;
|
357 |
}
|
358 |
|
359 |
-
// Token should be added here if available
|
360 |
var token = document.getElementById('user_token').value;
|
361 |
formData.append('token', token);
|
362 |
|
|
|
|
|
|
|
363 |
fetch('/new_submission', {
|
364 |
method: 'POST',
|
365 |
body: formData
|
|
|
313 |
</div>
|
314 |
{% endif %}
|
315 |
<div class="form-group mt-2">
|
316 |
+
<label for="submission_comment" class="text-sm font-medium text-gray-700">Submission description
|
317 |
+
(optional)
|
318 |
</label>
|
319 |
+
<textarea id="submission_comment" name="submission_comment" rows="5"
|
320 |
+
class="p-2.5 w-full text-sm text-gray-900" placeholder=""></textarea>
|
321 |
</div>
|
322 |
<div class="form-actions mt-6">
|
323 |
<button data-modal-hide="submission-modal" type="button"
|
|
|
357 |
return;
|
358 |
}
|
359 |
|
|
|
360 |
var token = document.getElementById('user_token').value;
|
361 |
formData.append('token', token);
|
362 |
|
363 |
+
var submissionComment = document.getElementById('submission_comment').value;
|
364 |
+
formData.append('submission_comment', submissionComment);
|
365 |
+
|
366 |
fetch('/new_submission', {
|
367 |
method: 'POST',
|
368 |
body: formData
|
competitions/utils.py
CHANGED
@@ -1,33 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import requests
|
|
|
2 |
from loguru import logger
|
3 |
|
4 |
-
from . import
|
5 |
-
|
6 |
-
|
7 |
-
def get_auth_headers(token: str, prefix: str = "Bearer"):
|
8 |
-
return {"Authorization": f"{prefix} {token}"}
|
9 |
-
|
10 |
-
|
11 |
-
def http_post(path: str, token: str, payload=None, domain: str = None, params=None) -> requests.Response:
|
12 |
-
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
|
13 |
-
try:
|
14 |
-
response = requests.post(
|
15 |
-
url=domain + path, json=payload, headers=get_auth_headers(token=token), allow_redirects=True, params=params
|
16 |
-
)
|
17 |
-
except requests.exceptions.ConnectionError:
|
18 |
-
logger.error("❌ Failed to reach AutoNLP API, check your internet connection")
|
19 |
-
response.raise_for_status()
|
20 |
-
return response
|
21 |
|
22 |
-
|
23 |
-
def http_get(path: str, token: str, domain: str = None) -> requests.Response:
|
24 |
-
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
|
25 |
-
try:
|
26 |
-
response = requests.get(url=domain + path, headers=get_auth_headers(token=token), allow_redirects=True)
|
27 |
-
except requests.exceptions.ConnectionError:
|
28 |
-
logger.error("❌ Failed to reach AutoNLP API, check your internet connection")
|
29 |
-
response.raise_for_status()
|
30 |
-
return response
|
31 |
|
32 |
|
33 |
def user_authentication(token):
|
@@ -53,3 +36,99 @@ def user_authentication(token):
|
|
53 |
def make_clickable_user(user_id):
|
54 |
link = "https://huggingface.co/" + user_id
|
55 |
return f'<a target="_blank" href="{link}">{user_id}</a>'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import subprocess
|
5 |
+
import traceback
|
6 |
+
|
7 |
import requests
|
8 |
+
from huggingface_hub import HfApi, hf_hub_download
|
9 |
from loguru import logger
|
10 |
|
11 |
+
from competitions.params import EvalParams
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
from . import MOONLANDING_URL
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
def user_authentication(token):
|
|
|
36 |
def make_clickable_user(user_id):
|
37 |
link = "https://huggingface.co/" + user_id
|
38 |
return f'<a target="_blank" href="{link}">{user_id}</a>'
|
39 |
+
|
40 |
+
|
41 |
+
def run_evaluation(params, local=False, wait=False):
|
42 |
+
params = json.loads(params)
|
43 |
+
if isinstance(params, str):
|
44 |
+
params = json.loads(params)
|
45 |
+
params = EvalParams(**params)
|
46 |
+
if not local:
|
47 |
+
params.output_path = "/tmp/model"
|
48 |
+
params.save(output_dir=params.output_path)
|
49 |
+
cmd = [
|
50 |
+
"python",
|
51 |
+
"-m",
|
52 |
+
"competitions.evaluate",
|
53 |
+
"--config",
|
54 |
+
os.path.join(params.output_path, "params.json"),
|
55 |
+
]
|
56 |
+
|
57 |
+
cmd = [str(c) for c in cmd]
|
58 |
+
logger.info(cmd)
|
59 |
+
env = os.environ.copy()
|
60 |
+
process = subprocess.Popen(" ".join(cmd), shell=True, env=env)
|
61 |
+
if wait:
|
62 |
+
process.wait()
|
63 |
+
return process.pid
|
64 |
+
|
65 |
+
|
66 |
+
def pause_space(params):
|
67 |
+
if "SPACE_ID" in os.environ:
|
68 |
+
logger.info("Pausing space...")
|
69 |
+
api = HfApi(token=params.token)
|
70 |
+
api.pause_space(repo_id=os.environ["SPACE_ID"])
|
71 |
+
|
72 |
+
|
73 |
+
def download_submission_info(params):
|
74 |
+
user_fname = hf_hub_download(
|
75 |
+
repo_id=params.competition_id,
|
76 |
+
filename=f"submission_info/{params.user_id}.json",
|
77 |
+
token=params.token,
|
78 |
+
repo_type="dataset",
|
79 |
+
)
|
80 |
+
with open(user_fname, "r", encoding="utf-8") as f:
|
81 |
+
user_submission_info = json.load(f)
|
82 |
+
|
83 |
+
return user_submission_info
|
84 |
+
|
85 |
+
|
86 |
+
def upload_submission_info(params, user_submission_info):
|
87 |
+
user_submission_info_json = json.dumps(user_submission_info, indent=4)
|
88 |
+
user_submission_info_json_bytes = user_submission_info_json.encode("utf-8")
|
89 |
+
user_submission_info_json_buffer = io.BytesIO(user_submission_info_json_bytes)
|
90 |
+
api = HfApi(token=params.token)
|
91 |
+
api.upload_file(
|
92 |
+
path_or_fileobj=user_submission_info_json_buffer,
|
93 |
+
path_in_repo=f"submission_info/{params.user_id}.json",
|
94 |
+
repo_id=params.competition_id,
|
95 |
+
repo_type="dataset",
|
96 |
+
)
|
97 |
+
|
98 |
+
|
99 |
+
def update_submission_status(params, status):
|
100 |
+
user_submission_info = download_submission_info(params)
|
101 |
+
for submission in user_submission_info["submissions"]:
|
102 |
+
if submission["submission_id"] == params.submission_id:
|
103 |
+
submission["status"] = status
|
104 |
+
break
|
105 |
+
upload_submission_info(params, user_submission_info)
|
106 |
+
|
107 |
+
|
108 |
+
def update_submission_score(params, public_score, private_score):
|
109 |
+
user_submission_info = download_submission_info(params)
|
110 |
+
for submission in user_submission_info["submissions"]:
|
111 |
+
if submission["submission_id"] == params.submission_id:
|
112 |
+
submission["public_score"] = public_score
|
113 |
+
submission["private_score"] = private_score
|
114 |
+
submission["status"] = "done"
|
115 |
+
break
|
116 |
+
upload_submission_info(params, user_submission_info)
|
117 |
+
|
118 |
+
|
119 |
+
def monitor(func):
|
120 |
+
def wrapper(*args, **kwargs):
|
121 |
+
params = kwargs.get("params", None)
|
122 |
+
if params is None and len(args) > 0:
|
123 |
+
params = args[0]
|
124 |
+
|
125 |
+
try:
|
126 |
+
return func(*args, **kwargs)
|
127 |
+
except Exception as e:
|
128 |
+
error_message = f"""{func.__name__} has failed due to an exception: {traceback.format_exc()}"""
|
129 |
+
logger.error(error_message)
|
130 |
+
logger.error(str(e))
|
131 |
+
update_submission_status(params, "failed")
|
132 |
+
pause_space(params)
|
133 |
+
|
134 |
+
return wrapper
|