Abhishek Thakur
commited on
Commit
·
48a5e54
1
Parent(s):
53034cd
fix
Browse files- competitions/submissions.py +29 -15
competitions/submissions.py
CHANGED
|
@@ -248,26 +248,40 @@ class Submissions:
|
|
| 248 |
first_submission = submissions_df.iloc[0]
|
| 249 |
if isinstance(first_submission["public_score"], dict):
|
| 250 |
# split the public score dict into columns
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
else:
|
| 257 |
first_submission = submissions_df.iloc[0]
|
| 258 |
if isinstance(first_submission["private_score"], dict):
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
submissions_df =
|
| 263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
|
| 265 |
if isinstance(first_submission["public_score"], dict):
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
submissions_df =
|
| 270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
|
| 272 |
return submissions_df
|
| 273 |
|
|
|
|
| 248 |
first_submission = submissions_df.iloc[0]
|
| 249 |
if isinstance(first_submission["public_score"], dict):
|
| 250 |
# split the public score dict into columns
|
| 251 |
+
temp_scores_df = submissions_df["public_score"].apply(pd.Series)
|
| 252 |
+
temp_scores_df = temp_scores_df.rename(columns=lambda x: "public_" + str(x))
|
| 253 |
+
submissions_df = pd.concat(
|
| 254 |
+
[
|
| 255 |
+
submissions_df.drop(["public_score"], axis=1),
|
| 256 |
+
temp_scores_df,
|
| 257 |
+
],
|
| 258 |
+
axis=1,
|
| 259 |
+
)
|
| 260 |
else:
|
| 261 |
first_submission = submissions_df.iloc[0]
|
| 262 |
if isinstance(first_submission["private_score"], dict):
|
| 263 |
+
# split the public score dict into columns
|
| 264 |
+
temp_scores_df = submissions_df["private_score"].apply(pd.Series)
|
| 265 |
+
temp_scores_df = temp_scores_df.rename(columns=lambda x: "private_" + str(x))
|
| 266 |
+
submissions_df = pd.concat(
|
| 267 |
+
[
|
| 268 |
+
submissions_df.drop(["private_score"], axis=1),
|
| 269 |
+
temp_scores_df,
|
| 270 |
+
],
|
| 271 |
+
axis=1,
|
| 272 |
+
)
|
| 273 |
|
| 274 |
if isinstance(first_submission["public_score"], dict):
|
| 275 |
+
# split the public score dict into columns
|
| 276 |
+
temp_scores_df = submissions_df["public_score"].apply(pd.Series)
|
| 277 |
+
temp_scores_df = temp_scores_df.rename(columns=lambda x: "public_" + str(x))
|
| 278 |
+
submissions_df = pd.concat(
|
| 279 |
+
[
|
| 280 |
+
submissions_df.drop(["public_score"], axis=1),
|
| 281 |
+
temp_scores_df,
|
| 282 |
+
],
|
| 283 |
+
axis=1,
|
| 284 |
+
)
|
| 285 |
|
| 286 |
return submissions_df
|
| 287 |
|