Abhishek Thakur
commited on
Commit
·
bca2446
1
Parent(s):
3ea1b9b
fix private lb logic
Browse files- competitions/competitions.py +20 -3
- competitions/leaderboard.py +81 -13
competitions/competitions.py
CHANGED
@@ -12,6 +12,7 @@ from .text import NO_SUBMISSIONS, SUBMISSION_SELECTION_TEXT, SUBMISSION_TEXT
|
|
12 |
leaderboard = Leaderboard(
|
13 |
end_date=competition_info.end_date,
|
14 |
eval_higher_is_better=competition_info.eval_higher_is_better,
|
|
|
15 |
competition_id=COMPETITION_ID,
|
16 |
autotrain_token=AUTOTRAIN_TOKEN,
|
17 |
)
|
@@ -29,8 +30,23 @@ submissions = Submissions(
|
|
29 |
def _my_submissions(user_token):
|
30 |
df = submissions.my_submissions(user_token)
|
31 |
if len(df) == 0:
|
32 |
-
return [
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
|
36 |
with gr.Blocks() as demo:
|
@@ -64,11 +80,12 @@ with gr.Blocks() as demo:
|
|
64 |
user_token = gr.Textbox(max_lines=1, value="hf_XXX", label="Please enter your Hugging Face token")
|
65 |
output_text = gr.Markdown(visible=True, show_label=False)
|
66 |
output_df = gr.DataFrame(visible=False)
|
|
|
67 |
my_subs_button = gr.Button("Fetch Submissions")
|
68 |
my_subs_button.click(
|
69 |
fn=_my_submissions,
|
70 |
inputs=[user_token],
|
71 |
-
outputs=[output_text, output_df],
|
72 |
)
|
73 |
|
74 |
fetch_lb_partial = partial(leaderboard.fetch, private=False)
|
|
|
12 |
leaderboard = Leaderboard(
|
13 |
end_date=competition_info.end_date,
|
14 |
eval_higher_is_better=competition_info.eval_higher_is_better,
|
15 |
+
max_selected_submissions=competition_info.selection_limit,
|
16 |
competition_id=COMPETITION_ID,
|
17 |
autotrain_token=AUTOTRAIN_TOKEN,
|
18 |
)
|
|
|
30 |
def _my_submissions(user_token):
|
31 |
df = submissions.my_submissions(user_token)
|
32 |
if len(df) == 0:
|
33 |
+
return [
|
34 |
+
gr.Markdown.update(visible=True, value=NO_SUBMISSIONS),
|
35 |
+
gr.DataFrame.update(visible=False),
|
36 |
+
gr.TextArea.update(visible=False),
|
37 |
+
]
|
38 |
+
selected_submission_ids = df[df["selected"] is True]["submission_id"].values.tolist()
|
39 |
+
if len(selected_submission_ids) > 0:
|
40 |
+
return [
|
41 |
+
gr.Markdown.update(visible=True),
|
42 |
+
gr.DataFrame.update(visible=True, data=df),
|
43 |
+
gr.TextArea.update(visible=False, value="\n".join(selected_submission_ids)),
|
44 |
+
]
|
45 |
+
return [
|
46 |
+
gr.Markdown.update(visible=False),
|
47 |
+
gr.DataFrame.update(visible=True, value=df),
|
48 |
+
gr.TextArea.update(visible=True),
|
49 |
+
]
|
50 |
|
51 |
|
52 |
with gr.Blocks() as demo:
|
|
|
80 |
user_token = gr.Textbox(max_lines=1, value="hf_XXX", label="Please enter your Hugging Face token")
|
81 |
output_text = gr.Markdown(visible=True, show_label=False)
|
82 |
output_df = gr.DataFrame(visible=False)
|
83 |
+
selected_submissions = gr.TextArea(visible=False, label="Selected Submissions")
|
84 |
my_subs_button = gr.Button("Fetch Submissions")
|
85 |
my_subs_button.click(
|
86 |
fn=_my_submissions,
|
87 |
inputs=[user_token],
|
88 |
+
outputs=[output_text, output_df, selected_submissions],
|
89 |
)
|
90 |
|
91 |
fetch_lb_partial = partial(leaderboard.fetch, private=False)
|
competitions/leaderboard.py
CHANGED
@@ -12,6 +12,7 @@ from huggingface_hub import snapshot_download
|
|
12 |
class Leaderboard:
|
13 |
end_date: datetime
|
14 |
eval_higher_is_better: bool
|
|
|
15 |
competition_id: str
|
16 |
autotrain_token: str
|
17 |
|
@@ -29,7 +30,7 @@ class Leaderboard:
|
|
29 |
"submission_datetime",
|
30 |
]
|
31 |
|
32 |
-
def
|
33 |
submissions_folder = snapshot_download(
|
34 |
repo_id=self.competition_id,
|
35 |
allow_patterns="*.json",
|
@@ -40,14 +41,10 @@ class Leaderboard:
|
|
40 |
for submission in glob.glob(os.path.join(submissions_folder, "*.json")):
|
41 |
with open(submission, "r") as f:
|
42 |
submission_info = json.load(f)
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
)
|
48 |
-
else:
|
49 |
-
submission_info["submissions"].sort(key=lambda x: x["private_score"] if private else x["public_score"])
|
50 |
-
|
51 |
# select only the best submission
|
52 |
submission_info["submissions"] = submission_info["submissions"][0]
|
53 |
temp_info = {
|
@@ -58,15 +55,84 @@ class Leaderboard:
|
|
58 |
"status": submission_info["submissions"]["status"],
|
59 |
"selected": submission_info["submissions"]["selected"],
|
60 |
"public_score": submission_info["submissions"]["public_score"],
|
61 |
-
"private_score": submission_info["submissions"]["private_score"],
|
62 |
"submission_date": submission_info["submissions"]["date"],
|
63 |
"submission_time": submission_info["submissions"]["time"],
|
64 |
}
|
65 |
submissions.append(temp_info)
|
66 |
return submissions
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
def fetch(self, private=False):
|
69 |
-
|
|
|
|
|
|
|
70 |
|
71 |
if len(submissions) == 0:
|
72 |
return pd.DataFrame()
|
@@ -108,8 +174,10 @@ class Leaderboard:
|
|
108 |
)
|
109 |
|
110 |
# only keep 4 significant digits in the score
|
111 |
-
|
112 |
-
|
|
|
|
|
113 |
|
114 |
# reset index
|
115 |
df = df.reset_index(drop=True)
|
|
|
12 |
class Leaderboard:
|
13 |
end_date: datetime
|
14 |
eval_higher_is_better: bool
|
15 |
+
max_selected_submissions: int
|
16 |
competition_id: str
|
17 |
autotrain_token: str
|
18 |
|
|
|
30 |
"submission_datetime",
|
31 |
]
|
32 |
|
33 |
+
def _process_public_lb(self):
|
34 |
submissions_folder = snapshot_download(
|
35 |
repo_id=self.competition_id,
|
36 |
allow_patterns="*.json",
|
|
|
41 |
for submission in glob.glob(os.path.join(submissions_folder, "*.json")):
|
42 |
with open(submission, "r") as f:
|
43 |
submission_info = json.load(f)
|
44 |
+
submission_info["submissions"].sort(
|
45 |
+
key=lambda x: x["public_score"],
|
46 |
+
reverse=True if self.eval_higher_is_better else False,
|
47 |
+
)
|
|
|
|
|
|
|
|
|
48 |
# select only the best submission
|
49 |
submission_info["submissions"] = submission_info["submissions"][0]
|
50 |
temp_info = {
|
|
|
55 |
"status": submission_info["submissions"]["status"],
|
56 |
"selected": submission_info["submissions"]["selected"],
|
57 |
"public_score": submission_info["submissions"]["public_score"],
|
58 |
+
# "private_score": submission_info["submissions"]["private_score"],
|
59 |
"submission_date": submission_info["submissions"]["date"],
|
60 |
"submission_time": submission_info["submissions"]["time"],
|
61 |
}
|
62 |
submissions.append(temp_info)
|
63 |
return submissions
|
64 |
|
65 |
+
def _process_private_lb(self):
|
66 |
+
submissions_folder = snapshot_download(
|
67 |
+
repo_id=self.competition_id,
|
68 |
+
allow_patterns="*.json",
|
69 |
+
use_auth_token=self.autotrain_token,
|
70 |
+
repo_type="dataset",
|
71 |
+
)
|
72 |
+
submissions = []
|
73 |
+
for submission in glob.glob(os.path.join(submissions_folder, "*.json")):
|
74 |
+
with open(submission, "r") as f:
|
75 |
+
submission_info = json.load(f)
|
76 |
+
# count the number of submissions which are selected
|
77 |
+
selected_submissions = 0
|
78 |
+
for sub in submission_info["submissions"]:
|
79 |
+
if sub["selected"]:
|
80 |
+
selected_submissions += 1
|
81 |
+
if selected_submissions == 0:
|
82 |
+
# select submissions with best public score
|
83 |
+
submission_info["submissions"].sort(
|
84 |
+
key=lambda x: x["public_score"],
|
85 |
+
reverse=True if self.eval_higher_is_better else False,
|
86 |
+
)
|
87 |
+
# select only the best submission
|
88 |
+
submission_info["submissions"] = submission_info["submissions"][0]
|
89 |
+
elif selected_submissions == self.max_selected_submissions:
|
90 |
+
# select only the selected submissions
|
91 |
+
submission_info["submissions"] = [sub for sub in submission_info["submissions"] if sub["selected"]]
|
92 |
+
# sort by private score
|
93 |
+
submission_info["submissions"].sort(
|
94 |
+
key=lambda x: x["private_score"],
|
95 |
+
reverse=True if self.eval_higher_is_better else False,
|
96 |
+
)
|
97 |
+
# select only the best submission
|
98 |
+
submission_info["submissions"] = submission_info["submissions"][0]
|
99 |
+
else:
|
100 |
+
temp_selected_submissions = [sub for sub in submission_info["submissions"] if sub["selected"]]
|
101 |
+
temp_best_public_submissions = [
|
102 |
+
sub for sub in submission_info["submissions"] if not sub["selected"]
|
103 |
+
]
|
104 |
+
temp_best_public_submissions.sort(
|
105 |
+
key=lambda x: x["public_score"],
|
106 |
+
reverse=True if self.eval_higher_is_better else False,
|
107 |
+
)
|
108 |
+
missing_candidates = self.max_selected_submissions - temp_selected_submissions
|
109 |
+
temp_best_public_submissions = temp_best_public_submissions[:missing_candidates]
|
110 |
+
submission_info["submissions"] = temp_selected_submissions + temp_best_public_submissions
|
111 |
+
submission_info["submissions"].sort(
|
112 |
+
key=lambda x: x["private_score"],
|
113 |
+
reverse=True if self.eval_higher_is_better else False,
|
114 |
+
)
|
115 |
+
submission_info["submissions"] = submission_info["submissions"][0]
|
116 |
+
|
117 |
+
temp_info = {
|
118 |
+
"id": submission_info["id"],
|
119 |
+
"name": submission_info["name"],
|
120 |
+
"submission_id": submission_info["submissions"]["submission_id"],
|
121 |
+
"submission_comment": submission_info["submissions"]["submission_comment"],
|
122 |
+
"status": submission_info["submissions"]["status"],
|
123 |
+
"selected": submission_info["submissions"]["selected"],
|
124 |
+
"private_score": submission_info["submissions"]["private_score"],
|
125 |
+
"submission_date": submission_info["submissions"]["date"],
|
126 |
+
"submission_time": submission_info["submissions"]["time"],
|
127 |
+
}
|
128 |
+
submissions.append(temp_info)
|
129 |
+
return submissions
|
130 |
+
|
131 |
def fetch(self, private=False):
|
132 |
+
if private:
|
133 |
+
submissions = self._process_private_lb()
|
134 |
+
else:
|
135 |
+
submissions = self._process_public_lb()
|
136 |
|
137 |
if len(submissions) == 0:
|
138 |
return pd.DataFrame()
|
|
|
174 |
)
|
175 |
|
176 |
# only keep 4 significant digits in the score
|
177 |
+
if private:
|
178 |
+
df["private_score"] = df["private_score"].apply(lambda x: round(x, 4))
|
179 |
+
else:
|
180 |
+
df["public_score"] = df["public_score"].apply(lambda x: round(x, 4))
|
181 |
|
182 |
# reset index
|
183 |
df = df.reset_index(drop=True)
|