Spaces:
Starting
on
T4
Starting
on
T4
File size: 12,468 Bytes
c9fc56f bca98b2 c9fc56f bca98b2 c9fc56f bca98b2 c9fc56f bca98b2 c9fc56f bca98b2 c9fc56f bca98b2 c9fc56f bca98b2 c9fc56f bca98b2 c9fc56f bca98b2 c9fc56f bca98b2 c9fc56f bca98b2 c9fc56f bca98b2 c9fc56f bca98b2 c9fc56f bca98b2 c9fc56f 76b3444 c9fc56f 76b3444 c9fc56f bca98b2 c9fc56f bca98b2 3ef0e67 bca98b2 3ef0e67 bca98b2 3ef0e67 bca98b2 3ef0e67 c9fc56f bca98b2 c9fc56f bca98b2 c9fc56f bca98b2 3ef0e67 bca98b2 3ef0e67 bca98b2 3ef0e67 bca98b2 c9fc56f bca98b2 c9fc56f bca98b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
import sys
import os
import pickle
import json
import threading
import time
import io
import enum
import hugsim_env
from collections import deque, OrderedDict
from datetime import datetime
from typing import Any, Dict
sys.path.append(os.getcwd())
from fastapi import FastAPI, Body, Header, Depends, HTTPException
from fastapi.responses import HTMLResponse, Response
from omegaconf import OmegaConf
from huggingface_hub import HfApi, hf_hub_download
import open3d as o3d
import numpy as np
import gymnasium
import uvicorn
from sim.utils.sim_utils import traj2control, traj_transform_to_global
from sim.utils.score_calculator import hugsim_evaluate
HF_TOKEN = os.getenv('HF_TOKEN', None)
COMPETITION_ID = os.getenv('COMPETITION_ID', None)
hf_api = HfApi(token=HF_TOKEN)
class SubmissionStatus(enum.Enum):
PENDING = 0
QUEUED = 1
PROCESSING = 2
SUCCESS = 3
FAILED = 4
def get_token_info(token: str) -> Dict[str, Any]:
token_info_path = hf_hub_download(
repo_id=COMPETITION_ID,
filename=f"token_data_info/{token}.json",
repo_type="dataset",
token=token
)
with open(token_info_path, 'r') as f:
token_info = json.load(f)
return token_info
def download_submission_info(team_id: str) -> Dict[str, Any]:
"""
Download the submission info from Hugging Face Hub.
Args:
team_id (str): The team ID.
Returns:
Dict[str, Any]: The submission info.
"""
submission_info_path = hf_hub_download(
repo_id=COMPETITION_ID,
filename=f"submission_info/{team_id}.json",
repo_type="dataset",
token=HF_TOKEN
)
with open(submission_info_path, 'r') as f:
submission_info = json.load(f)
return submission_info
def upload_submission_info(team_id: str, user_submission_info: Dict[str, Any]):
user_submission_info_json = json.dumps(user_submission_info, indent=4)
user_submission_info_json_bytes = user_submission_info_json.encode("utf-8")
user_submission_info_json_buffer = io.BytesIO(user_submission_info_json_bytes)
hf_api.upload_file(
path_or_fileobj=user_submission_info_json_buffer,
path_in_repo=f"submission_info/{team_id}.json",
repo_id=COMPETITION_ID,
repo_type="dataset",
)
def update_submission_status(team_id: str, submission_id: str, status: int):
user_submission_info = download_submission_info(team_id)
for submission in user_submission_info["submissions"]:
if submission["submission_id"] == submission_id:
submission["status"] = status
break
upload_submission_info(team_id, user_submission_info)
def delete_client_space(client_space_id: str):
hf_api.delete_repo(
repo_id=client_space_id,
repo_type="space"
)
class FifoDict:
def __init__(self, max_size: int):
self.max_size = max_size
self._order_dict = OrderedDict()
self.locker = threading.Lock()
def push(self, key: str, value: Any):
with self.locker:
if key in self._order_dict:
self._order_dict.move_to_end(key)
return
if len(self._order_dict) >= self.max_size:
self._order_dict.popitem(last=False)
self._order_dict[key] = value
def get(self, key: str) -> Any:
return self._order_dict.get(key, None)
class EnvHandler:
def __init__(self, cfg, output):
self.cfg = cfg
self.output = output
self.env = gymnasium.make('hugsim_env/HUGSim-v0', cfg=cfg, output=output)
self._lock = threading.Lock()
self.reset_env()
def close(self):
"""
Close the environment and release resources.
"""
self.env.close()
self._log("Environment closed.")
def reset_env(self):
"""
Reset the environment and initialize variables.
"""
self._cnt = 0
self._done = False
self._save_data = {'type': 'closeloop', 'frames': []}
self._obs, self._info = self.env.reset()
self._log_list = deque(maxlen=100)
self._log("Environment reset complete.")
def get_current_state(self):
"""
Get the current state of the environment.
"""
return {
"obs": self._obs,
"info": self._info,
}
@property
def has_done(self) -> bool:
"""
Check if the episode is done.
Returns:
bool: True if the episode is done, False otherwise.
"""
return self._done
@property
def log_list(self) -> deque:
"""
Get the log list.
Returns:
deque: The log list containing recent log messages.
"""
return self._log_list
def execute_action(self, plan_traj: np.ndarray) -> bool:
"""
Execute the action based on the planned trajectory.
Args:
plan_traj (Any): The planned trajectory to follow.
Returns:
bool: True if the episode is done, False otherwise.
"""
acc, steer_rate = traj2control(plan_traj, self._info)
action = {'acc': acc, 'steer_rate': steer_rate}
self._log("Executing action:", action)
self._obs, _, terminated, truncated, self._info = self.env.step(action)
self._cnt += 1
self._done = terminated or truncated or self._cnt > 400
imu_plan_traj = plan_traj[:, [1, 0]]
imu_plan_traj[:, 1] *= -1
global_traj = traj_transform_to_global(imu_plan_traj, self._info['ego_box'])
self._save_data['frames'].append({
'time_stamp': self._info['timestamp'],
'is_key_frame': True,
'ego_box': self._info['ego_box'],
'obj_boxes': self._info['obj_boxes'],
'obj_names': ['car' for _ in self._info['obj_boxes']],
'planned_traj': {
'traj': global_traj,
'timestep': 0.5
},
'collision': self._info['collision'],
'rc': self._info['rc']
})
if not self._done:
return False
with open(os.path.join(self.output, 'data.pkl'), 'wb') as wf:
pickle.dump([self._save_data], wf)
ground_xyz = np.asarray(o3d.io.read_point_cloud(os.path.join(self.output, 'ground.ply')).points)
scene_xyz = np.asarray(o3d.io.read_point_cloud(os.path.join(self.output, 'scene.ply')).points)
results = hugsim_evaluate([self._save_data], ground_xyz, scene_xyz)
with open(os.path.join(self.output, 'eval.json'), 'w') as f:
json.dump(results, f)
self._log("Evaluation results saved.")
return True
def _log(self, *messages):
log_message = f"[{str(datetime.now())}]" + " ".join([str(msg) for msg in messages]) + "\n"
with self._lock:
self._log_list.append(log_message)
class EnvHandlerManager:
def __init__(self):
self._env_handlers = {}
self._lock = threading.Lock()
def _generate_env_handler(self, env_id: str):
base_path = os.path.join(os.path.dirname(__file__), 'docker', "web_server_config", 'nuscenes_base.yaml')
scenario_path = os.path.join(os.path.dirname(__file__), 'docker', "web_server_config", 'scene-0383-medium-00.yaml')
camera_path = os.path.join(os.path.dirname(__file__), 'docker', "web_server_config", 'nuscenes_camera.yaml')
kinematic_path = os.path.join(os.path.dirname(__file__), 'docker', "web_server_config", 'kinematic.yaml')
scenario_config = OmegaConf.load(scenario_path)
base_config = OmegaConf.load(base_path)
camera_config = OmegaConf.load(camera_path)
kinematic_config = OmegaConf.load(kinematic_path)
cfg = OmegaConf.merge(
{"scenario": scenario_config},
{"base": base_config},
{"camera": camera_config},
{"kinematic": kinematic_config}
)
model_path = os.path.join(cfg.base.model_base, cfg.scenario.scene_name)
model_config = OmegaConf.load(os.path.join(model_path, 'cfg.yaml'))
model_config.update({"model_path": "/app/app_datas/PAMI2024/release/ss/scenes/nuscenes/scene-0383"})
cfg.update(model_config)
cfg.base.output_dir = "/app/app_datas/env_output"
output = os.path.join(cfg.base.output_dir, f"{env_id}_hugsim_env")
os.makedirs(output, exist_ok=True)
return EnvHandler(cfg, output)
def get_env_handler(self, env_id: str) -> EnvHandler:
"""
Get the environment handler for the given environment ID.
Args:
env_id (str): The environment ID.
Returns:
EnvHandler: The environment handler instance.
"""
with self._lock:
if env_id not in self._env_handlers:
self._env_handlers[env_id] = self._generate_env_handler(env_id)
return self._env_handlers[env_id]
app = FastAPI()
_result_dict= FifoDict(max_size=100)
env_manager = EnvHandlerManager()
def _get_env_handler(auth_token: str = Header(...)) -> EnvHandler:
try:
token_info = get_token_info(auth_token)
except Exception:
raise HTTPException(status_code=401)
return env_manager.get_env_handler(token_info["submission_id"])
def _load_numpy_ndarray_json_str(json_str: str) -> np.ndarray:
"""
Load a numpy ndarray from a JSON string.
"""
data = json.loads(json_str)
return np.array(data["data"], dtype=data["dtype"]).reshape(data["shape"])
@app.post("/reset")
def reset_endpoint(env_handler: EnvHandler = Depends(_get_env_handler)):
"""
Reset the environment.
"""
env_handler.reset_env()
return {"success": True}
@app.get("/get_current_state")
def get_current_state_endpoint(env_handler: EnvHandler = Depends(_get_env_handler)):
"""
Get the current state of the environment.
"""
state = env_handler.get_current_state()
return Response(content=pickle.dumps(state), media_type="application/octet-stream")
@app.post("/execute_action")
def execute_action_endpoint(
plan_traj: str = Body(..., embed=True),
transaction_id: str = Body(..., embed=True),
auth_token: str = Header(...),
env_handler: EnvHandler = Depends(_get_env_handler)
):
"""
Execute the action based on the planned trajectory.
Args:
plan_traj (str): The planned trajectory in JSON format.
transaction_id (str): The unique transaction ID for caching results.
env_handler (EnvHandler): The environment handler instance.
Returns:
Response: The response containing the execution result.
"""
cache_result = _result_dict.get(transaction_id)
if cache_result is not None:
return Response(content=cache_result, media_type="application/octet-stream")
if env_handler.has_done:
result = pickle.dumps({"done": done, "state": None})
_result_dict.push(transaction_id, result)
return Response(content=result, media_type="application/octet-stream")
plan_traj = _load_numpy_ndarray_json_str(plan_traj)
done = env_handler.execute_action(plan_traj)
if done:
token_info = get_token_info(auth_token)
env_manager.get_env_handler(token_info["submission_id"]).close()
delete_client_space(token_info["client_space_id"])
update_submission_status(token_info["team_id"], token_info["submission_id"], SubmissionStatus.SUCCESS.value)
result = pickle.dumps({"done": done, "state": None})
_result_dict.push(transaction_id, result)
return Response(content=result, media_type="application/octet-stream")
state = env_handler.get_current_state()
result = pickle.dumps({"done": done, "state": state})
_result_dict.push(transaction_id, result)
return Response(content=result, media_type="application/octet-stream")
@app.get("/")
def main_page_endpoint(env_handler: EnvHandler = Depends(_get_env_handler)):
"""
Main page endpoint to display logs.
"""
log_str = "\n".join(env_handler.log_list)
html_content = f"""
<html><body><pre>{log_str}</pre></body></html>
<script>
setTimeout(function() {{
window.location.reload();
}}, 5000);
</script>
"""
return HTMLResponse(content=html_content)
uvicorn.run(app, port=7860, workers=1)
|