File size: 12,468 Bytes
c9fc56f
 
 
 
 
 
 
 
 
 
bca98b2
c9fc56f
 
 
bca98b2
c9fc56f
 
 
 
 
 
 
 
 
 
 
 
bca98b2
c9fc56f
bca98b2
c9fc56f
 
 
 
 
 
 
 
 
 
bca98b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9fc56f
 
 
 
 
 
 
 
bca98b2
 
c9fc56f
 
 
 
 
 
 
 
 
bca98b2
c9fc56f
 
 
bca98b2
c9fc56f
bca98b2
 
c9fc56f
 
 
 
bca98b2
 
c9fc56f
bca98b2
c9fc56f
 
bca98b2
c9fc56f
 
bca98b2
 
c9fc56f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bca98b2
 
 
 
 
 
 
c9fc56f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76b3444
 
c9fc56f
76b3444
c9fc56f
 
 
 
 
 
 
 
 
 
 
bca98b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9fc56f
bca98b2
 
 
 
 
 
 
 
 
 
 
3ef0e67
bca98b2
3ef0e67
bca98b2
 
 
3ef0e67
bca98b2
 
 
 
3ef0e67
c9fc56f
bca98b2
c9fc56f
bca98b2
 
c9fc56f
bca98b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ef0e67
bca98b2
 
 
 
 
 
 
 
 
 
 
 
 
3ef0e67
bca98b2
 
 
 
 
3ef0e67
bca98b2
 
 
 
 
 
 
 
c9fc56f
bca98b2
 
 
 
 
 
 
 
 
 
c9fc56f
bca98b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import sys
import os
import pickle
import json
import threading
import time
import io
import enum
import hugsim_env
from collections import deque, OrderedDict
from datetime import datetime
from typing import Any, Dict
sys.path.append(os.getcwd())

from fastapi import FastAPI, Body, Header, Depends, HTTPException
from fastapi.responses import HTMLResponse, Response
from omegaconf import OmegaConf
from huggingface_hub import HfApi, hf_hub_download
import open3d as o3d
import numpy as np
import gymnasium
import uvicorn

from sim.utils.sim_utils import traj2control, traj_transform_to_global
from sim.utils.score_calculator import hugsim_evaluate

HF_TOKEN = os.getenv('HF_TOKEN', None)
COMPETITION_ID = os.getenv('COMPETITION_ID', None)

hf_api = HfApi(token=HF_TOKEN)


class SubmissionStatus(enum.Enum):
    PENDING = 0
    QUEUED = 1
    PROCESSING = 2
    SUCCESS = 3
    FAILED = 4


def get_token_info(token: str) -> Dict[str, Any]:
    token_info_path = hf_hub_download(
        repo_id=COMPETITION_ID,
        filename=f"token_data_info/{token}.json",
        repo_type="dataset",
        token=token
    )
    
    with open(token_info_path, 'r') as f:
        token_info = json.load(f)
    
    return token_info


def download_submission_info(team_id: str) -> Dict[str, Any]:
    """
    Download the submission info from Hugging Face Hub.
    Args:
        team_id (str): The team ID.
    Returns:
        Dict[str, Any]: The submission info.
    """
    submission_info_path = hf_hub_download(
        repo_id=COMPETITION_ID,
        filename=f"submission_info/{team_id}.json",
        repo_type="dataset",
        token=HF_TOKEN
    )
    with open(submission_info_path, 'r') as f:
        submission_info = json.load(f)
    
    return submission_info


def upload_submission_info(team_id: str, user_submission_info: Dict[str, Any]):
    user_submission_info_json = json.dumps(user_submission_info, indent=4)
    user_submission_info_json_bytes = user_submission_info_json.encode("utf-8")
    user_submission_info_json_buffer = io.BytesIO(user_submission_info_json_bytes)
    hf_api.upload_file(
        path_or_fileobj=user_submission_info_json_buffer,
        path_in_repo=f"submission_info/{team_id}.json",
        repo_id=COMPETITION_ID,
        repo_type="dataset",
    )


def update_submission_status(team_id: str, submission_id: str, status: int):
    user_submission_info = download_submission_info(team_id)
    for submission in user_submission_info["submissions"]:
        if submission["submission_id"] == submission_id:
            submission["status"] = status
            break
    upload_submission_info(team_id, user_submission_info)


def delete_client_space(client_space_id: str):
    hf_api.delete_repo(
        repo_id=client_space_id,
        repo_type="space"
    )


class FifoDict:
    def __init__(self, max_size: int):
        self.max_size = max_size
        self._order_dict = OrderedDict()
        self.locker = threading.Lock()
    
    def push(self, key: str, value: Any):
        with self.locker:
            if key in self._order_dict:
                self._order_dict.move_to_end(key)
                return
            if len(self._order_dict) >= self.max_size:
                self._order_dict.popitem(last=False)
            self._order_dict[key] = value
    
    def get(self, key: str) -> Any:
        return self._order_dict.get(key, None)


class EnvHandler:
    def __init__(self, cfg, output):
        self.cfg = cfg
        self.output = output
        self.env = gymnasium.make('hugsim_env/HUGSim-v0', cfg=cfg, output=output)
        self._lock = threading.Lock()
        self.reset_env()

    def close(self):
        """
        Close the environment and release resources.
        """
        self.env.close()
        self._log("Environment closed.")

    def reset_env(self):
        """
        Reset the environment and initialize variables.
        """
        self._cnt = 0
        self._done = False
        self._save_data = {'type': 'closeloop', 'frames': []}
        self._obs, self._info = self.env.reset()
        self._log_list = deque(maxlen=100)
        self._log("Environment reset complete.")
    
    def get_current_state(self):
        """
        Get the current state of the environment.
        """
        return {
            "obs": self._obs,
            "info": self._info,
        }

    @property
    def has_done(self) -> bool:
        """
        Check if the episode is done.
        Returns:
            bool: True if the episode is done, False otherwise.
        """
        return self._done

    @property
    def log_list(self) -> deque:
        """
        Get the log list.
        Returns:
            deque: The log list containing recent log messages.
        """
        return self._log_list

    def execute_action(self, plan_traj: np.ndarray) -> bool:
        """
        Execute the action based on the planned trajectory.
        Args:
            plan_traj (Any): The planned trajectory to follow.
        Returns:
            bool: True if the episode is done, False otherwise.
        """
        acc, steer_rate = traj2control(plan_traj, self._info)
        action = {'acc': acc, 'steer_rate': steer_rate}
        self._log("Executing action:", action)
    
        self._obs, _, terminated, truncated, self._info = self.env.step(action)
        self._cnt += 1
        self._done = terminated or truncated or self._cnt > 400

        imu_plan_traj = plan_traj[:, [1, 0]]
        imu_plan_traj[:, 1] *= -1
        global_traj = traj_transform_to_global(imu_plan_traj, self._info['ego_box'])
        self._save_data['frames'].append({
            'time_stamp': self._info['timestamp'],
            'is_key_frame': True,
            'ego_box': self._info['ego_box'],
            'obj_boxes': self._info['obj_boxes'],
            'obj_names': ['car' for _ in self._info['obj_boxes']],
            'planned_traj': {
                'traj': global_traj,
                'timestep': 0.5
            },
            'collision': self._info['collision'],
            'rc': self._info['rc']
        })
        
        if not self._done:
            return False

        with open(os.path.join(self.output, 'data.pkl'), 'wb') as wf:
            pickle.dump([self._save_data], wf)
        
        ground_xyz = np.asarray(o3d.io.read_point_cloud(os.path.join(self.output, 'ground.ply')).points)
        scene_xyz = np.asarray(o3d.io.read_point_cloud(os.path.join(self.output, 'scene.ply')).points)
        results = hugsim_evaluate([self._save_data], ground_xyz, scene_xyz)
        with open(os.path.join(self.output, 'eval.json'), 'w') as f:
            json.dump(results, f)
        
        self._log("Evaluation results saved.")
        return True

    def _log(self, *messages):
        log_message = f"[{str(datetime.now())}]" + " ".join([str(msg) for msg in messages]) + "\n"
        with self._lock:
            self._log_list.append(log_message)


class EnvHandlerManager:
    def __init__(self):
        self._env_handlers = {}
        self._lock = threading.Lock()

    def _generate_env_handler(self, env_id: str):
        base_path = os.path.join(os.path.dirname(__file__), 'docker', "web_server_config", 'nuscenes_base.yaml')
        scenario_path = os.path.join(os.path.dirname(__file__), 'docker', "web_server_config", 'scene-0383-medium-00.yaml')
        camera_path = os.path.join(os.path.dirname(__file__), 'docker', "web_server_config", 'nuscenes_camera.yaml')
        kinematic_path = os.path.join(os.path.dirname(__file__), 'docker', "web_server_config", 'kinematic.yaml')

        scenario_config = OmegaConf.load(scenario_path)
        base_config = OmegaConf.load(base_path)
        camera_config = OmegaConf.load(camera_path)
        kinematic_config = OmegaConf.load(kinematic_path)
        cfg = OmegaConf.merge(
            {"scenario": scenario_config},
            {"base": base_config},
            {"camera": camera_config},
            {"kinematic": kinematic_config}
        )

        model_path = os.path.join(cfg.base.model_base, cfg.scenario.scene_name)
        model_config = OmegaConf.load(os.path.join(model_path, 'cfg.yaml'))
        model_config.update({"model_path": "/app/app_datas/PAMI2024/release/ss/scenes/nuscenes/scene-0383"})
        cfg.update(model_config)
        cfg.base.output_dir = "/app/app_datas/env_output"
        
        output = os.path.join(cfg.base.output_dir, f"{env_id}_hugsim_env")
        os.makedirs(output, exist_ok=True)
        return EnvHandler(cfg, output)

    def get_env_handler(self, env_id: str) -> EnvHandler:
        """
        Get the environment handler for the given environment ID.
        Args:
            env_id (str): The environment ID.
        Returns:
            EnvHandler: The environment handler instance.
        """
        with self._lock:
            if env_id not in self._env_handlers:
                self._env_handlers[env_id] = self._generate_env_handler(env_id)
            return self._env_handlers[env_id]


app = FastAPI()

_result_dict= FifoDict(max_size=100)
env_manager = EnvHandlerManager()


def _get_env_handler(auth_token: str = Header(...)) -> EnvHandler:
    try:
        token_info = get_token_info(auth_token)
    except Exception:
        raise HTTPException(status_code=401)
    return env_manager.get_env_handler(token_info["submission_id"])


def _load_numpy_ndarray_json_str(json_str: str) -> np.ndarray:
    """
    Load a numpy ndarray from a JSON string.
    """
    data = json.loads(json_str)
    return np.array(data["data"], dtype=data["dtype"]).reshape(data["shape"])


@app.post("/reset")
def reset_endpoint(env_handler: EnvHandler = Depends(_get_env_handler)):
    """
    Reset the environment.
    """
    env_handler.reset_env()
    return {"success": True}


@app.get("/get_current_state")
def get_current_state_endpoint(env_handler: EnvHandler = Depends(_get_env_handler)):
    """
    Get the current state of the environment.
    """
    state = env_handler.get_current_state()
    return Response(content=pickle.dumps(state), media_type="application/octet-stream")


@app.post("/execute_action")
def execute_action_endpoint(
    plan_traj: str = Body(..., embed=True),
    transaction_id: str = Body(..., embed=True),
    auth_token: str = Header(...),
    env_handler: EnvHandler = Depends(_get_env_handler)
):
    """
    Execute the action based on the planned trajectory.
    Args:
        plan_traj (str): The planned trajectory in JSON format.
        transaction_id (str): The unique transaction ID for caching results.
        env_handler (EnvHandler): The environment handler instance.
    Returns:
        Response: The response containing the execution result.
    """
    cache_result = _result_dict.get(transaction_id)
    if cache_result is not None:
        return Response(content=cache_result, media_type="application/octet-stream")

    if env_handler.has_done:
        result = pickle.dumps({"done": done, "state": None})
        _result_dict.push(transaction_id, result)
        return Response(content=result, media_type="application/octet-stream")

    plan_traj = _load_numpy_ndarray_json_str(plan_traj)
    done = env_handler.execute_action(plan_traj)
    if done:
        token_info = get_token_info(auth_token)
        env_manager.get_env_handler(token_info["submission_id"]).close()
        delete_client_space(token_info["client_space_id"])
        update_submission_status(token_info["team_id"], token_info["submission_id"], SubmissionStatus.SUCCESS.value)
        result = pickle.dumps({"done": done, "state": None})
        _result_dict.push(transaction_id, result)
        return Response(content=result, media_type="application/octet-stream")
    
    state = env_handler.get_current_state()
    result = pickle.dumps({"done": done, "state": state})
    _result_dict.push(transaction_id, result)
    return Response(content=result, media_type="application/octet-stream")


@app.get("/")
def main_page_endpoint(env_handler: EnvHandler = Depends(_get_env_handler)):
    """
    Main page endpoint to display logs.
    """
    log_str = "\n".join(env_handler.log_list)
    html_content = f"""
        <html><body><pre>{log_str}</pre></body></html>
        <script>
            setTimeout(function() {{
                window.location.reload();
            }}, 5000);
        </script>
    """
    return HTMLResponse(content=html_content)


uvicorn.run(app, port=7860, workers=1)