File size: 8,374 Bytes
7f3c2df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import torch
from scene.gaussian_model import GaussianModel
from scene.ground_model import GroundModel
from gsplat.rendering import rasterization
import roma
from scene.cameras import Camera
from torch import Tensor

def euler2matrix(yaw):
    return torch.tensor([
        [torch.cos(-yaw), 0, torch.sin(-yaw)],
        [0, 1, 0],
        [-torch.sin(-yaw), 0, torch.cos(-yaw)]
    ]).cuda()

def cat_bgfg(bg, fg, only_xyz=False):
    if only_xyz:
        if bg.ground_model is None:
            bg_feats = [bg.get_xyz]
        else:
            bg_feats = [bg.get_full_xyz]
    else:
        if bg.ground_model is None:
            bg_feats = [bg.get_xyz, bg.get_opacity, bg.get_scaling, bg.get_rotation, bg.get_features, bg.get_3D_features]
        else:
            bg_feats = [bg.get_full_xyz, bg.get_full_opacity, bg.get_full_scaling, bg.get_full_rotation, bg.get_full_features, bg.get_full_3D_features]

    
    if len(fg) == 0:
        return bg_feats
    
    output = []
    for fg_feat, bg_feat in zip(fg, bg_feats):
        if fg_feat is None:
            output.append(bg_feat)
        else:
            if bg_feat.shape[1] != fg_feat.shape[1]:
                fg_feat = fg_feat[:, :bg_feat.shape[1], :]
            output.append(torch.cat((bg_feat, fg_feat), dim=0))
    
    return output

def concatenate_all(all_fg):
    output = []
    for feat in list(zip(*all_fg)):
        output.append(torch.cat(feat, dim=0))
    return output

def proj_uv(xyz, cam):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    intr = torch.as_tensor(cam.K[:3, :3]).float().to(device)  # (3, 3)
    w2c = torch.linalg.inv(cam.c2w)[:3, :]  # (3, 4)

    c_xyz = (w2c[:3, :3] @ xyz.T).T + w2c[:3, 3]
    i_xyz = (intr @ c_xyz.mT).mT  # (N, 3)
    uv = i_xyz[:, [1,0]] / i_xyz[:, -1:].clip(1e-3) # (N, 2)
    return uv


def unicycle_b2w(timestamp, model):
    pred = model(timestamp)
    if pred is None:
        return None
    pred_a, pred_b, pred_v, pitchroll, pred_yaw, pred_h = pred
    rt = torch.eye(4).float().cuda()
    rt[:3,:3] = roma.euler_to_rotmat('xzy', [-pitchroll[0]+torch.pi/2, -pitchroll[1]+torch.pi/2, -pred_yaw+torch.pi/2])
    rt[1, 3], rt[0, 3], rt[2, 3] = pred_h, pred_a, pred_b
    return rt


def render(viewpoint:Camera, prev_viewpoint:Camera, pc:GaussianModel, dynamic_gaussians:dict, 
            unicycles:dict, bg_color:Tensor, render_optical=False, planning=[]):
    """
    Render the scene. 
    
    Background tensor (bg_color) must be on GPU!
    """
    timestamp = viewpoint.timestamp

    all_fg = [None, None, None, None, None, None]
    prev_all_fg = [None]

    if unicycles is None or len(unicycles) == 0:
        track_dict = viewpoint.dynamics
        if prev_viewpoint is not None:
            prev_track_dict = prev_viewpoint.dynamics
    else:
        track_dict, prev_track_dict = {}, {}
        for track_id, B2W in viewpoint.dynamics.items():
            if track_id in unicycles:
                B2W = unicycle_b2w(timestamp, unicycles[track_id]['model'])
            track_dict[track_id] = B2W
            if prev_viewpoint is not None:
                prev_B2W = unicycle_b2w(prev_viewpoint.timestamp, unicycles[track_id]['model'])
                prev_track_dict[track_id] = prev_B2W
    if len(planning) > 0:
        for plan_id, B2W in planning[0].items():
            track_dict[plan_id] = B2W
        if prev_viewpoint is not None:
            for plan_id, B2W in planning[1].items():
                prev_track_dict[plan_id] = B2W
    
    all_fg, prev_all_fg = [], []
    for track_id, B2W in track_dict.items():
        w_dxyz = (B2W[:3, :3] @ dynamic_gaussians[track_id].get_xyz.T).T + B2W[:3, 3]

        drot = roma.quat_wxyz_to_xyzw(dynamic_gaussians[track_id].get_rotation)
        drot = roma.unitquat_to_rotmat(drot)
        w_drot = roma.quat_xyzw_to_wxyz(roma.rotmat_to_unitquat(B2W[:3, :3] @ drot))
        fg = [w_dxyz, 
            dynamic_gaussians[track_id].get_opacity, 
            dynamic_gaussians[track_id].get_scaling, 
            w_drot,
            # dynamic_gaussians[track_id].get_rotation,
            dynamic_gaussians[track_id].get_features,
            dynamic_gaussians[track_id].get_3D_features]
            
        all_fg.append(fg)

        if render_optical and prev_viewpoint is not None:
            if track_id in prev_track_dict:
                prev_B2W = prev_track_dict[track_id]
                prev_w_dxyz = torch.mm(prev_B2W[:3, :3], dynamic_gaussians[track_id].get_xyz.T).T + prev_B2W[:3, 3]
                prev_all_fg.append([prev_w_dxyz])
            else:
                prev_all_fg.append([w_dxyz])
    
    all_fg = concatenate_all(all_fg)
    xyz, opacities, scales, rotations, shs, feats3D = cat_bgfg(pc, all_fg)

    if render_optical and prev_viewpoint is not None:
        prev_all_fg = concatenate_all(prev_all_fg)
        prev_xyz = cat_bgfg(pc, prev_all_fg, only_xyz=True)[0]
        uv = proj_uv(xyz, viewpoint)
        prev_uv = proj_uv(prev_xyz, prev_viewpoint)
        delta_uv = prev_uv - uv
        delta_uv = torch.cat([delta_uv, torch.ones_like(delta_uv[:, :1], device=delta_uv.device)], dim=-1)
    else:
        delta_uv = torch.zeros_like(xyz)

    if pc.affine:
        cam_xyz, cam_dir = viewpoint.c2w[:3, 3].cuda(), viewpoint.c2w[:3, 2].cuda()
        o_enc = pc.pos_enc(cam_xyz[None, :] / 60)
        d_enc = pc.dir_enc(cam_dir[None, :])
        appearance = pc.appearance_model(torch.cat([o_enc, d_enc], dim=1)) * 1e-1
        affine_weight, affine_bias = appearance[:, :9].view(3, 3), appearance[:, -3:]
        affine_weight = affine_weight + torch.eye(3, device=appearance.device)
    
    if render_optical:
        render_mode = 'RGB+ED+S+F'
    else:
        render_mode = 'RGB+ED+S'
        
    renders, render_alphas, info = rasterization(
        means=xyz,
        quats=rotations,
        scales=scales,
        opacities=opacities[:, 0],
        colors=shs,
        viewmats=torch.linalg.inv(viewpoint.c2w)[None, ...],  # [C, 4, 4]
        Ks=viewpoint.K[None, :3, :3],  # [C, 3, 3]
        width=viewpoint.width,
        height=viewpoint.height,
        smts=feats3D[None, ...],
        flows= delta_uv[None, ...],
        render_mode=render_mode,
        sh_degree=pc.active_sh_degree,
        near_plane=0.01,
        far_plane=500,
        packed=False,
        backgrounds=bg_color[None, :],
    )

    renders = renders[0]
    rendered_image = renders[..., :3].permute(2,0,1)
    depth = renders[..., 3][None, ...]
    smt = renders[..., 4:(4+feats3D.shape[-1])].permute(2,0,1)
    
    if pc.affine:
        colors = rendered_image.view(3, -1).permute(1, 0) # (H*W, 3)
        refined_image = (colors @ affine_weight + affine_bias).clip(0, 1).permute(1, 0).view(*rendered_image.shape)
    else:
        refined_image = rendered_image

    return {"render": refined_image,
            "feats": smt,
            "depth": depth,
            "opticalflow": renders[..., -2:].permute(2,0,1) if render_optical else None,
            "alphas": render_alphas,
            "viewspace_points": info["means2d"],
            "info": info,
            }


def render_ground(viewpoint:Camera, pc:GroundModel, bg_color:Tensor):
    xyz, opacities, scales = pc.get_xyz, pc.get_opacity, pc.get_scaling
    rotations, shs, feats3D = pc.get_rotation, pc.get_features, pc.get_3D_features

    K = viewpoint.K[None, :3, :3]
    renders, render_alphas, info = rasterization(
        means=xyz,
        quats=rotations,
        scales=scales,
        opacities=opacities[:, 0],
        colors=shs,
        viewmats=torch.linalg.inv(viewpoint.c2w)[None, ...],  # [C, 4, 4]
        Ks=K,  # [C, 3, 3]
        width=viewpoint.width,
        height=viewpoint.height,
        smts=feats3D[None, ...],
        render_mode='RGB+ED+S',
        sh_degree=pc.active_sh_degree,
        near_plane=0.01,
        far_plane=500,
        packed=False,
        backgrounds=bg_color[None, :],
    )

    renders = renders[0]
    rendered_image = renders[..., :3].permute(2,0,1)
    depth = renders[..., 3][None, ...]
    smt = renders[..., 4:(4+feats3D.shape[-1])].permute(2,0,1)

    return {"render": rendered_image,
            "feats": smt,
            "depth": depth,
            "opticalflow": None,
            "alphas": render_alphas,
            "viewspace_points": info["means2d"],
            "info": info,
            }