Spaces:
Starting
on
T4
Starting
on
T4
File size: 17,095 Bytes
7f3c2df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import torch
import numpy as np
from utils.general_utils import inverse_sigmoid, get_expon_lr_func, build_rotation
from torch import nn
import os
from utils.system_utils import mkdir_p
from plyfile import PlyData, PlyElement
from utils.sh_utils import RGB2SH, SH2RGB
from simple_knn._C import distCUDA2
from utils.graphics_utils import BasicPointCloud
from utils.general_utils import strip_symmetric, build_scaling_rotation
import open3d as o3d
import math
from utils.graphics_utils import BasicPointCloud
from utils.sh_utils import RGB2SH
class GroundModel:
def setup_functions(self):
def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation):
L = build_scaling_rotation(scaling_modifier * scaling, rotation)
actual_covariance = L @ L.transpose(1, 2)
symm = strip_symmetric(actual_covariance)
return symm
self.scaling_activation = torch.exp
self.scaling_inverse_activation = torch.log
self.covariance_activation = build_covariance_from_scaling_rotation
self.opacity_activation = torch.sigmoid
self.inverse_opacity_activation = torch.logit
self.rotation_activation = torch.nn.functional.normalize
def __init__(self, sh_degree: int, ground_pcd: BasicPointCloud=None, model_args=None, finetune=False):
assert not ((ground_pcd is None) and (model_args is None)), "Need at least one way of initialization"
self.active_sh_degree = 0
self.max_sh_degree = sh_degree
self.scale = 0.1
if ground_pcd is not None:
self._xyz = nn.Parameter(torch.from_numpy(ground_pcd.points).float().cuda())
fused_color = RGB2SH(torch.tensor(np.asarray(ground_pcd.colors)).float().cuda())
features = torch.zeros((fused_color.shape[0], 3, (self.max_sh_degree + 1) ** 2)).float().cuda()
features[:, :3, 0 ] = fused_color
features[:, 3:, 1:] = 0.0
self._features_dc = nn.Parameter(features[:,:,0:1].transpose(1, 2).contiguous().requires_grad_(True))
self._features_rest = nn.Parameter(features[:,:,1:].transpose(1, 2).contiguous().requires_grad_(True))
self._feats3D = torch.zeros((self._xyz.shape[0], 20)).cuda()
self._feats3D[:, 1] = 1
self._feats3D = nn.Parameter(self._feats3D)
self._rotation = torch.zeros((self._xyz.shape[0], 4)).cuda()
self._rotation[:, 0] = 1
self._opacity = inverse_sigmoid(torch.ones((self._xyz.shape[0], 1)).cuda() * 0.99)
self._scaling = nn.Parameter(torch.ones((self._xyz.shape[0], 2)).float().cuda() * math.log(self.scale))
self.max_radii2D = torch.zeros((self._xyz.shape[0]), device="cuda")
self.percent_dense = 0.01
self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
else:
self.restore(model_args)
if finetune:
self.param_groups = [
{'params': [self._features_dc], 'lr': 2.5e-3, "name": "f_dc"},
{'params': [self._features_rest], 'lr': 2.5e-3 / 20.0, "name": "f_rest"},
{'params': [self._feats3D], 'lr': 1e-3, "name": "feats3D"},
]
else:
self.param_groups = [
{'params': [self._xyz], 'lr': 1.6e-4, "name": "xyz"},
{'params': [self._features_dc], 'lr': 2.5e-3, "name": "f_dc"},
{'params': [self._features_rest], 'lr': 2.5e-3 / 20.0, "name": "f_rest"},
{'params': [self._feats3D], 'lr': 1e-2, "name": "feats3D"},
{'params': [self._opacity], 'lr': 0.05, "name": "opacity"},
{'params': [self._scaling], 'lr': 1e-3, "name": "scaling"},
]
self.optimizer = torch.optim.Adam(self.param_groups, lr=0.0, eps=1e-15)
self.setup_functions()
def capture(self):
return (
self.active_sh_degree,
self._xyz,
# self._y,
# self._z,
self._features_dc,
self._features_rest,
self._feats3D,
self._scaling,
self._rotation,
self._opacity,
)
def restore(self, model_args):
(self.active_sh_degree,
self._xyz,
# self._y,
# self._z,
self._features_dc,
self._features_rest,
self._feats3D,
self._scaling,
self._rotation,
self._opacity) = model_args
@property
def get_scaling(self):
scale_y = torch.ones_like(self._xyz[:, 0]) * math.log(0.001)
scaling = torch.stack((self._scaling[:, 0], scale_y, self._scaling[:, 1]), dim=1).cuda()
# scaling = torch.stack((self._scaling, scale_y, self._scaling), dim=1).cuda()
return self.scaling_activation(scaling)
@property
def get_rotation(self):
return self.rotation_activation(self._rotation)
@property
def get_xyz(self):
return self._xyz
@property
def get_features(self):
features_dc = self._features_dc
features_rest = self._features_rest
return torch.cat((features_dc, features_rest), dim=1)
@property
def get_3D_features(self):
return torch.softmax(self._feats3D, dim=-1)
@property
def get_opacity(self):
return self.opacity_activation(self._opacity)
def get_covariance(self, scaling_modifier = 1):
return self.covariance_activation(self.get_scaling, scaling_modifier, self._rotation)
def oneupSHdegree(self):
if self.active_sh_degree < self.max_sh_degree:
self.active_sh_degree += 1
def construct_list_of_attributes(self):
l = ['x', 'y', 'z', 'nx', 'ny', 'nz']
# All channels except the 3 DC
for i in range(self._features_dc.shape[1]*self._features_dc.shape[2]):
l.append('f_dc_{}'.format(i))
for i in range(self._features_rest.shape[1]*self._features_rest.shape[2]):
l.append('f_rest_{}'.format(i))
for i in range(self._feats3D.shape[1]):
l.append('semantic_{}'.format(i))
l.append('opacity')
for i in range(self._scaling.shape[1]):
l.append('scale_{}'.format(i))
for i in range(self._rotation.shape[1]):
l.append('rot_{}'.format(i))
return l
def save_ply(self, path):
mkdir_p(os.path.dirname(path))
xyz = self.get_xyz.detach().cpu().numpy()
normals = np.zeros_like(xyz)
f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
f_rest = self._features_rest.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
feats3D = self._feats3D.detach().cpu().numpy()
opacities = self._opacity.detach().cpu().numpy()
scale = self._scaling.detach().cpu().numpy()
rotation = self._rotation.detach().cpu().numpy()
dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()]
elements = np.empty(xyz.shape[0], dtype=dtype_full)
attributes = np.concatenate((xyz, normals, f_dc, f_rest, feats3D, opacities, scale, rotation), axis=1)
elements[:] = list(map(tuple, attributes))
el = PlyElement.describe(elements, 'vertex')
PlyData([el]).write(path)
def save_vis_ply(self, path):
mkdir_p(os.path.dirname(path))
xyz = self.get_xyz.detach().cpu().numpy()
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(xyz)
colors = SH2RGB(self._features_dc[:, 0, :].detach().cpu().numpy()).clip(0, 1)
pcd.colors = o3d.utility.Vector3dVector(colors)
o3d.io.write_point_cloud(path, pcd)
def reset_opacity(self):
opacities_new = inverse_sigmoid(torch.min(self.get_opacity, torch.ones_like(self.get_opacity)*0.01))
optimizable_tensors = self.replace_tensor_to_optimizer(opacities_new, "opacity")
self._opacity = optimizable_tensors["opacity"]
def replace_tensor_to_optimizer(self, tensor, name):
optimizable_tensors = {}
for group in self.optimizer.param_groups:
if group["name"] == name:
stored_state = self.optimizer.state.get(group['params'][0], None)
if stored_state is not None:
stored_state["exp_avg"] = torch.zeros_like(tensor)
stored_state["exp_avg_sq"] = torch.zeros_like(tensor)
del self.optimizer.state[group['params'][0]]
group["params"][0] = nn.Parameter(tensor.requires_grad_(True))
self.optimizer.state[group['params'][0]] = stored_state
optimizable_tensors[group["name"]] = group["params"][0]
else:
group["params"][0] = nn.Parameter(tensor.requires_grad_(True))
optimizable_tensors[group["name"]] = group["params"][0]
return optimizable_tensors
def _prune_optimizer(self, mask):
optimizable_tensors = {}
for group in self.optimizer.param_groups:
if group['name'] == 'appearance_model':
continue
stored_state = self.optimizer.state.get(group['params'][0], None)
if stored_state is not None:
stored_state["exp_avg"] = stored_state["exp_avg"][mask]
stored_state["exp_avg_sq"] = stored_state["exp_avg_sq"][mask]
del self.optimizer.state[group['params'][0]]
group["params"][0] = nn.Parameter((group["params"][0][mask].requires_grad_(True)))
self.optimizer.state[group['params'][0]] = stored_state
optimizable_tensors[group["name"]] = group["params"][0]
else:
group["params"][0] = nn.Parameter(group["params"][0][mask].requires_grad_(True))
optimizable_tensors[group["name"]] = group["params"][0]
return optimizable_tensors
def prune_points(self, mask):
valid_points_mask = ~mask
optimizable_tensors = self._prune_optimizer(valid_points_mask)
self._xyz = optimizable_tensors["xyz"]
self._features_dc = optimizable_tensors["f_dc"]
self._features_rest = optimizable_tensors["f_rest"]
self._feats3D = optimizable_tensors["feats3D"]
self._opacity = optimizable_tensors["opacity"]
self._scaling = optimizable_tensors["scaling"]
self._rotation = self._rotation[0, :].repeat((self._xyz.shape[0], 1))
self.xyz_gradient_accum = self.xyz_gradient_accum[valid_points_mask]
self.denom = self.denom[valid_points_mask]
self.max_radii2D = self.max_radii2D[valid_points_mask]
def cat_tensors_to_optimizer(self, tensors_dict):
optimizable_tensors = {}
for group in self.optimizer.param_groups:
if group['name'] not in tensors_dict:
continue
assert len(group["params"]) == 1
extension_tensor = tensors_dict[group["name"]]
stored_state = self.optimizer.state.get(group["params"][0], None)
if stored_state is not None:
stored_state["exp_avg"] = torch.cat((stored_state["exp_avg"], torch.zeros_like(extension_tensor)), dim=0)
stored_state["exp_avg_sq"] = torch.cat((stored_state["exp_avg_sq"], torch.zeros_like(extension_tensor)), dim=0)
del self.optimizer.state[group["params"][0]]
group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True))
self.optimizer.state[group["params"][0]] = stored_state
optimizable_tensors[group["name"]] = group["params"][0]
else:
group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True))
optimizable_tensors[group["name"]] = group["params"][0]
return optimizable_tensors
def densification_postfix(self, new_xyz, new_features_dc, new_features_rest, new_feats3D, new_opacities, new_scaling, new_rotation):
d = {"xyz": new_xyz,
"f_dc": new_features_dc,
"f_rest": new_features_rest,
"feats3D": new_feats3D,
"opacity": new_opacities,
"scaling" : new_scaling}
optimizable_tensors = self.cat_tensors_to_optimizer(d)
self._xyz = optimizable_tensors["xyz"]
self._features_dc = optimizable_tensors["f_dc"]
self._feats3D = optimizable_tensors["feats3D"]
self._features_rest = optimizable_tensors["f_rest"]
self._opacity = optimizable_tensors["opacity"]
self._scaling = optimizable_tensors["scaling"]
self._rotation = self._rotation[0, :].repeat((self._xyz.shape[0], 1))
self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda")
def densify_and_split(self, grads, grad_threshold, scene_extent, N=2):
n_init_points = self.get_xyz.shape[0]
# Extract points that satisfy the gradient condition
padded_grad = torch.zeros((n_init_points), device="cuda")
padded_grad[:grads.shape[0]] = grads.squeeze()
selected_pts_mask = torch.where(padded_grad >= grad_threshold, True, False)
selected_pts_mask = torch.logical_and(selected_pts_mask,
torch.max(self.get_scaling, dim=1).values > self.percent_dense*scene_extent)
stds = self.get_scaling[selected_pts_mask].repeat(N,1)
means =torch.zeros((stds.size(0), 3),device="cuda")
samples = torch.normal(mean=means, std=stds)
rots = build_rotation(self._rotation[selected_pts_mask]).repeat(N,1,1)
new_xyz = torch.bmm(rots, samples.unsqueeze(-1)).squeeze(-1) + self.get_xyz[selected_pts_mask].repeat(N, 1)
new_scaling = self.scaling_inverse_activation(self.get_scaling[selected_pts_mask].repeat(N,1) / (0.8*N))[:, [0,2]]
new_rotation = self._rotation[selected_pts_mask].repeat(N,1)
new_features_dc = self._features_dc[selected_pts_mask].repeat(N,1,1)
new_features_rest = self._features_rest[selected_pts_mask].repeat(N,1,1)
new_feats3D = self._feats3D[selected_pts_mask].repeat(N,1)
new_opacity = self._opacity[selected_pts_mask].repeat(N,1)
self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_feats3D, new_opacity, new_scaling, new_rotation)
prune_filter = torch.cat((selected_pts_mask, torch.zeros(N * selected_pts_mask.sum(), device="cuda", dtype=bool)))
self.prune_points(prune_filter)
def densify_and_clone(self, grads, grad_threshold, scene_extent):
# Extract points that satisfy the gradient condition
selected_pts_mask = torch.where(torch.norm(grads, dim=-1) >= grad_threshold, True, False)
selected_pts_mask = torch.logical_and(selected_pts_mask,
torch.max(self.get_scaling, dim=1).values <= self.percent_dense*scene_extent)
new_xyz = self._xyz[selected_pts_mask]
new_features_dc = self._features_dc[selected_pts_mask]
new_features_rest = self._features_rest[selected_pts_mask]
new_feats3D = self._feats3D[selected_pts_mask]
new_opacities = self._opacity[selected_pts_mask]
new_scaling = self._scaling[selected_pts_mask]
new_rotation = self._rotation[selected_pts_mask]
self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_feats3D, new_opacities, new_scaling, new_rotation)
def densify_and_prune(self, max_grad, min_opacity, extent, max_screen_size):
grads = self.xyz_gradient_accum / self.denom
grads[grads.isnan()] = 0.0
self.densify_and_clone(grads, max_grad, extent)
self.densify_and_split(grads, max_grad, extent)
prune_mask = (self.get_opacity < min_opacity).squeeze()
if max_screen_size:
big_points_vs = self.max_radii2D > max_screen_size
big_points_ws = self.get_scaling.max(dim=1).values > 1.0
prune_mask = torch.logical_or(torch.logical_or(prune_mask, big_points_vs), big_points_ws)
self.prune_points(prune_mask)
torch.cuda.empty_cache()
def add_densification_stats(self, viewspace_point_tensor, update_filter):
self.xyz_gradient_accum[update_filter] += torch.norm(viewspace_point_tensor.grad[update_filter,:2], dim=-1, keepdim=True)
self.denom[update_filter] += 1
def add_densification_stats_grad(self, tensor_grad, update_filter):
self.xyz_gradient_accum[update_filter] += torch.norm(tensor_grad[update_filter,:2], dim=-1, keepdim=True)
self.denom[update_filter] += 1 |