Spaces:
Paused
Paused
File size: 35,186 Bytes
7f3c2df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 |
"""
This provides an implementation of the iterative linear quadratic regulator (iLQR) algorithm for trajectory tracking.
It is specialized to the case with a discrete-time kinematic bicycle model and a quadratic trajectory tracking cost.
Original (Nonlinear) Discrete Time System:
z_k = [x_k, y_k, theta_k, v_k, delta_k]
u_k = [a_k, phi_k]
x_{k+1} = x_k + v_k * cos(theta_k) * dt
y_{k+1} = y_k + v_k * sin(theta_k) * dt
theta_{k+1} = theta_k + v_k * tan(delta_k) / L * dt
v_{k+1} = v_k + a_k * dt
delta_{k+1} = delta_k + phi_k * dt
where (x_k, y_k, theta_k) is the pose at timestep k with time discretization dt,
v_k and a_k are velocity and acceleration,
delta_k and phi_k are steering angle and steering angle rate,
and L is the vehicle wheelbase.
Quadratic Tracking Cost:
J = sum_{k=0}^{N-1} ||u_k||_2^{R_k} +
sum_{k=0}^N ||z_k - z_{ref,k}||_2^{Q_k}
For simplicity, we opt to use constant input cost matrices R_k = R and constant state cost matrices Q_k = Q.
There are multiple improvements that can be done for this implementation, but omitted for simplicity of the code.
Some of these include:
* Handle constraints directly in the optimization (e.g. log-barrier / penalty method with quadratic cost estimate).
* Line search in the input policy update (feedforward term) to determine a good gradient step size.
References Used: https://people.eecs.berkeley.edu/~pabbeel/cs287-fa19/slides/Lec5-LQR.pdf and
https://www.cs.cmu.edu/~rsalakhu/10703/Lectures/Lecture_trajectoryoptimization.pdf
"""
import time
from dataclasses import dataclass, fields
from typing import List, Optional, Tuple
import numpy as np
import numpy.typing as npt
# from nuplan.common.actor_state.vehicle_parameters import get_pacifica_parameters
# from nuplan.common.geometry.compute import principal_value
# from nuplan.planning.simulation.controller.tracker.tracker_utils import (
# complete_kinematic_state_and_inputs_from_poses,
# compute_steering_angle_feedback,
# )
from sim.ilqr.utils import principal_value, complete_kinematic_state_and_inputs_from_poses, compute_steering_angle_feedback
DoubleMatrix = npt.NDArray[np.float64]
@dataclass(frozen=True)
class ILQRSolverParameters:
"""Parameters related to the solver implementation."""
discretization_time: float # [s] Time discretization used for integration.
# Cost weights for state [x, y, heading, velocity, steering angle] and input variables [acceleration, steering rate].
state_cost_diagonal_entries: List[float]
input_cost_diagonal_entries: List[float]
# Trust region cost weights for state and input variables. Helps keep linearization error per update step bounded.
state_trust_region_entries: List[float]
input_trust_region_entries: List[float]
# Parameters related to solver runtime / solution sub-optimality.
max_ilqr_iterations: int # Maximum number of iterations to run iLQR before timeout.
convergence_threshold: float # Threshold for delta inputs below which we can terminate iLQR early.
max_solve_time: Optional[
float
] # [s] If defined, sets a maximum time to run a solve call of iLQR before terminating.
# Constraints for underlying dynamics model.
max_acceleration: float # [m/s^2] Absolute value threshold on acceleration input.
max_steering_angle: float # [rad] Absolute value threshold on steering angle state.
max_steering_angle_rate: float # [rad/s] Absolute value threshold on steering rate input.
# Parameters for dynamics / linearization.
min_velocity_linearization: float # [m/s] Absolute value threshold below which linearization velocity is modified.
wheelbase: float # [m] Wheelbase length parameter for the vehicle.
def __post_init__(self) -> None:
"""Ensure entries lie in expected bounds and initialize wheelbase."""
for entry in [
"discretization_time",
"max_ilqr_iterations",
"convergence_threshold",
"max_acceleration",
"max_steering_angle",
"max_steering_angle_rate",
"min_velocity_linearization",
"wheelbase",
]:
assert getattr(self, entry) > 0.0, f"Field {entry} should be positive."
assert self.max_steering_angle < np.pi / 2.0, "Max steering angle should be less than 90 degrees."
if isinstance(self.max_solve_time, float):
assert self.max_solve_time > 0.0, "The specified max solve time should be positive."
assert np.all([x >= 0 for x in self.state_cost_diagonal_entries]), "Q matrix must be positive semidefinite."
assert np.all([x > 0 for x in self.input_cost_diagonal_entries]), "R matrix must be positive definite."
assert np.all(
[x > 0 for x in self.state_trust_region_entries]
), "State trust region cost matrix must be positive definite."
assert np.all(
[x > 0 for x in self.input_trust_region_entries]
), "Input trust region cost matrix must be positive definite."
@dataclass(frozen=True)
class ILQRWarmStartParameters:
"""Parameters related to generating a warm start trajectory for iLQR."""
k_velocity_error_feedback: float # Gain for initial velocity error for warm start acceleration.
k_steering_angle_error_feedback: float # Gain for initial steering angle error for warm start steering rate.
lookahead_distance_lateral_error: float # [m] Distance ahead for which we estimate lateral error.
k_lateral_error: float # Gain for lateral error to compute steering angle feedback.
jerk_penalty_warm_start_fit: float # Penalty for jerk in velocity profile estimation.
curvature_rate_penalty_warm_start_fit: float # Penalty for curvature rate in curvature profile estimation.
def __post_init__(self) -> None:
"""Ensure entries lie in expected bounds."""
for entry in [
"k_velocity_error_feedback",
"k_steering_angle_error_feedback",
"lookahead_distance_lateral_error",
"k_lateral_error",
"jerk_penalty_warm_start_fit",
"curvature_rate_penalty_warm_start_fit",
]:
assert getattr(self, entry) > 0.0, f"Field {entry} should be positive."
@dataclass(frozen=True)
class ILQRIterate:
"""Contains state, input, and associated Jacobian trajectories needed to perform an update step of iLQR."""
state_trajectory: DoubleMatrix
input_trajectory: DoubleMatrix
state_jacobian_trajectory: DoubleMatrix
input_jacobian_trajectory: DoubleMatrix
def __post_init__(self) -> None:
"""Check consistency of dimension across trajectory elements."""
assert len(self.state_trajectory.shape) == 2, "Expect state trajectory to be a 2D matrix."
state_trajectory_length, state_dim = self.state_trajectory.shape
assert len(self.input_trajectory.shape) == 2, "Expect input trajectory to be a 2D matrix."
input_trajectory_length, input_dim = self.input_trajectory.shape
assert (
input_trajectory_length == state_trajectory_length - 1
), "State trajectory should be 1 longer than the input trajectory."
assert self.state_jacobian_trajectory.shape == (input_trajectory_length, state_dim, state_dim)
assert self.input_jacobian_trajectory.shape == (input_trajectory_length, state_dim, input_dim)
for field in fields(self):
# Make sure that we have no nan entries in our trajectory rollout prior to operating on this.
assert ~np.any(np.isnan(getattr(self, field.name))), f"{field.name} has unexpected nan values."
@dataclass(frozen=True)
class ILQRInputPolicy:
"""Contains parameters for the perturbation input policy computed after performing LQR."""
state_feedback_matrices: DoubleMatrix
feedforward_inputs: DoubleMatrix
def __post__init__(self) -> None:
"""Check shape of policy parameters."""
assert (
len(self.state_feedback_matrices.shape) == 3
), "Expected state_feedback_matrices to have shape (n_horizon, n_inputs, n_states)"
assert (
len(self.feedforward_inputs.shape) == 2
), "Expected feedforward inputs to have shape (n_horizon, n_inputs)."
assert (
self.feedforward_inputs.shape == self.state_feedback_matrices.shape[:2]
), "Inconsistent horizon or input dimension between feedforward inputs and state feedback matrices."
for field in fields(self):
# Make sure that we have no nan entries in our policy parameters prior to using them.
assert ~np.any(np.isnan(getattr(self, field.name))), f"{field.name} has unexpected nan values."
@dataclass(frozen=True)
class ILQRSolution:
"""Contains the iLQR solution with associated cost for consumption by the solver's client."""
state_trajectory: DoubleMatrix
input_trajectory: DoubleMatrix
tracking_cost: float
def __post_init__(self) -> None:
"""Check consistency of dimension across trajectory elements and nonnegative cost."""
assert len(self.state_trajectory.shape) == 2, "Expect state trajectory to be a 2D matrix."
state_trajectory_length, _ = self.state_trajectory.shape
assert len(self.input_trajectory.shape) == 2, "Expect input trajectory to be a 2D matrix."
input_trajectory_length, _ = self.input_trajectory.shape
assert (
input_trajectory_length == state_trajectory_length - 1
), "State trajectory should be 1 longer than the input trajectory."
assert self.tracking_cost >= 0.0, "Expect the tracking cost to be nonnegative."
class ILQRSolver:
"""iLQR solver implementation, see module docstring for details."""
def __init__(
self,
solver_params: ILQRSolverParameters,
warm_start_params: ILQRWarmStartParameters,
) -> None:
"""
Initialize solver parameters.
:param solver_params: Contains solver parameters for iLQR.
:param warm_start_params: Contains warm start parameters for iLQR.
"""
self._solver_params = solver_params
self._warm_start_params = warm_start_params
self._n_states = 5 # state dimension
self._n_inputs = 2 # input dimension
state_cost_diagonal_entries = self._solver_params.state_cost_diagonal_entries
assert (
len(state_cost_diagonal_entries) == self._n_states
), f"State cost matrix should have diagonal length {self._n_states}."
self._state_cost_matrix: DoubleMatrix = np.diag(state_cost_diagonal_entries)
input_cost_diagonal_entries = self._solver_params.input_cost_diagonal_entries
assert (
len(input_cost_diagonal_entries) == self._n_inputs
), f"Input cost matrix should have diagonal length {self._n_inputs}."
self._input_cost_matrix: DoubleMatrix = np.diag(input_cost_diagonal_entries)
state_trust_region_entries = self._solver_params.state_trust_region_entries
assert (
len(state_trust_region_entries) == self._n_states
), f"State trust region cost matrix should have diagonal length {self._n_states}."
self._state_trust_region_cost_matrix: DoubleMatrix = np.diag(state_trust_region_entries)
input_trust_region_entries = self._solver_params.input_trust_region_entries
assert (
len(input_trust_region_entries) == self._n_inputs
), f"Input trust region cost matrix should have diagonal length {self._n_inputs}."
self._input_trust_region_cost_matrix: DoubleMatrix = np.diag(input_trust_region_entries)
max_acceleration = self._solver_params.max_acceleration
max_steering_angle_rate = self._solver_params.max_steering_angle_rate
# Define input clip limits once to avoid recomputation in _clip_inputs.
self._input_clip_min = (-max_acceleration, -max_steering_angle_rate)
self._input_clip_max = (max_acceleration, max_steering_angle_rate)
def solve(self, current_state: DoubleMatrix, reference_trajectory: DoubleMatrix) -> List[ILQRSolution]:
"""
Run the main iLQR loop used to try to find (locally) optimal inputs to track the reference trajectory.
:param current_state: The initial state from which we apply inputs, z_0.
:param reference_trajectory: The state reference we'd like to track, inclusive of the initial timestep,
z_{r,k} for k in {0, ..., N}.
:return: A list of solution iterates after running the iLQR algorithm where the index is the iteration number.
"""
# Check that state parameter has the right shape.
assert current_state.shape == (self._n_states,), "Incorrect state shape."
# Check that reference trajectory parameter has the right shape.
assert len(reference_trajectory.shape) == 2, "Reference trajectory should be a 2D matrix."
reference_trajectory_length, reference_trajectory_state_dimension = reference_trajectory.shape
assert reference_trajectory_length > 1, "The reference trajectory should be at least two timesteps long."
assert (
reference_trajectory_state_dimension == self._n_states
), "The reference trajectory should have a matching state dimension."
# List of ILQRSolution results where the index corresponds to the iteration of iLQR.
solution_list: List[ILQRSolution] = []
# Get warm start input and state trajectory, as well as associated Jacobians.
current_iterate = self._input_warm_start(current_state, reference_trajectory)
# Main iLQR Loop.
solve_start_time = time.perf_counter()
for _ in range(self._solver_params.max_ilqr_iterations):
# Determine the cost and store the associated solution object.
tracking_cost = self._compute_tracking_cost(
iterate=current_iterate,
reference_trajectory=reference_trajectory,
)
solution_list.append(
ILQRSolution(
input_trajectory=current_iterate.input_trajectory,
state_trajectory=current_iterate.state_trajectory,
tracking_cost=tracking_cost,
)
)
# Determine the LQR optimal perturbations to apply.
lqr_input_policy = self._run_lqr_backward_recursion(
current_iterate=current_iterate,
reference_trajectory=reference_trajectory,
)
# Apply the optimal perturbations to generate the next input trajectory iterate.
input_trajectory_next = self._update_inputs_with_policy(
current_iterate=current_iterate,
lqr_input_policy=lqr_input_policy,
)
# Check for convergence/timeout and terminate early if so.
# Else update the input_trajectory iterate and continue.
input_trajectory_norm_difference = np.linalg.norm(input_trajectory_next - current_iterate.input_trajectory)
current_iterate = self._run_forward_dynamics(current_state, input_trajectory_next)
if input_trajectory_norm_difference < self._solver_params.convergence_threshold:
break
elapsed_time = time.perf_counter() - solve_start_time
if (
isinstance(self._solver_params.max_solve_time, float)
and elapsed_time >= self._solver_params.max_solve_time
):
break
# Store the final iterate in the solution_dict.
tracking_cost = self._compute_tracking_cost(
iterate=current_iterate,
reference_trajectory=reference_trajectory,
)
solution_list.append(
ILQRSolution(
input_trajectory=current_iterate.input_trajectory,
state_trajectory=current_iterate.state_trajectory,
tracking_cost=tracking_cost,
)
)
return solution_list
####################################################################################################################
# Helper methods.
####################################################################################################################
def _compute_tracking_cost(self, iterate: ILQRIterate, reference_trajectory: DoubleMatrix) -> float:
"""
Compute the trajectory tracking cost given a candidate solution.
:param iterate: Contains the candidate state and input trajectory to evaluate.
:param reference_trajectory: The desired state reference trajectory with same length as state_trajectory.
:return: The tracking cost of the candidate state/input trajectory.
"""
input_trajectory = iterate.input_trajectory
state_trajectory = iterate.state_trajectory
assert len(state_trajectory) == len(
reference_trajectory
), "The state and reference trajectory should have the same length."
error_state_trajectory = state_trajectory - reference_trajectory
error_state_trajectory[:, 2] = principal_value(error_state_trajectory[:, 2])
cost = np.sum([u.T @ self._input_cost_matrix @ u for u in input_trajectory]) + np.sum(
[e.T @ self._state_cost_matrix @ e for e in error_state_trajectory]
)
return float(cost)
def _clip_inputs(self, inputs: DoubleMatrix) -> DoubleMatrix:
"""
Used to clip control inputs within constraints.
:param: inputs: The control inputs with shape (self._n_inputs,) to clip.
:return: Clipped version of the control inputs, unmodified if already within constraints.
"""
assert inputs.shape == (self._n_inputs,), f"The inputs should be a 1D vector with {self._n_inputs} elements."
return np.clip(inputs, self._input_clip_min, self._input_clip_max) # type: ignore
def _clip_steering_angle(self, steering_angle: float) -> float:
"""
Used to clip the steering angle state within bounds.
:param steering_angle: [rad] A steering angle (scalar) to clip.
:return: [rad] The clipped steering angle.
"""
steering_angle_sign = 1.0 if steering_angle >= 0 else -1.0
steering_angle = steering_angle_sign * min(abs(steering_angle), self._solver_params.max_steering_angle)
return steering_angle
def _input_warm_start(self, current_state: DoubleMatrix, reference_trajectory: DoubleMatrix) -> ILQRIterate:
"""
Given a reference trajectory, we generate the warm start (initial guess) by inferring the inputs applied based
on poses in the reference trajectory.
:param current_state: The initial state from which we apply inputs.
:param reference_trajectory: The reference trajectory we are trying to follow.
:return: The warm start iterate from which to start iLQR.
"""
reference_states_completed, reference_inputs_completed = complete_kinematic_state_and_inputs_from_poses(
discretization_time=self._solver_params.discretization_time,
wheel_base=self._solver_params.wheelbase,
poses=reference_trajectory[:, :3],
jerk_penalty=self._warm_start_params.jerk_penalty_warm_start_fit,
curvature_rate_penalty=self._warm_start_params.curvature_rate_penalty_warm_start_fit,
)
# We could just stop here and apply reference_inputs_completed (assuming it satisfies constraints).
# This could work if current_state = reference_states_completed[0,:] - i.e. no initial tracking error.
# We add feedback input terms for the first control input only to account for nonzero initial tracking error.
_, _, _, velocity_current, steering_angle_current = current_state
_, _, _, velocity_reference, steering_angle_reference = reference_states_completed[0, :]
acceleration_feedback = -self._warm_start_params.k_velocity_error_feedback * (
velocity_current - velocity_reference
)
steering_angle_feedback = compute_steering_angle_feedback(
pose_reference=current_state[:3],
pose_current=reference_states_completed[0, :3],
lookahead_distance=self._warm_start_params.lookahead_distance_lateral_error,
k_lateral_error=self._warm_start_params.k_lateral_error,
)
steering_angle_desired = steering_angle_feedback + steering_angle_reference
steering_rate_feedback = -self._warm_start_params.k_steering_angle_error_feedback * (
steering_angle_current - steering_angle_desired
)
reference_inputs_completed[0, 0] += acceleration_feedback
reference_inputs_completed[0, 1] += steering_rate_feedback
# We rerun dynamics with constraints applied to make sure we have a feasible warm start for iLQR.
return self._run_forward_dynamics(current_state, reference_inputs_completed)
####################################################################################################################
# Dynamics and Jacobian.
####################################################################################################################
def _run_forward_dynamics(self, current_state: DoubleMatrix, input_trajectory: DoubleMatrix) -> ILQRIterate:
"""
Compute states and corresponding state/input Jacobian matrices using forward dynamics.
We additionally return the input since the dynamics may modify the input to ensure constraint satisfaction.
:param current_state: The initial state from which we apply inputs. Must be feasible given constraints.
:param input_trajectory: The input trajectory applied to the model. May be modified to ensure feasibility.
:return: A feasible iterate after applying dynamics with state/input trajectories and Jacobian matrices.
"""
# Store rollout as a set of numpy arrays, initialized as np.nan to ensure we correctly fill them in.
# The state trajectory includes the current_state, z_0, and is 1 element longer than the other arrays.
# The final_input_trajectory captures the applied input for the dynamics model satisfying constraints.
N = len(input_trajectory)
state_trajectory = np.nan * np.ones((N + 1, self._n_states), dtype=np.float64)
final_input_trajectory = np.nan * np.ones_like(input_trajectory, dtype=np.float64)
state_jacobian_trajectory = np.nan * np.ones((N, self._n_states, self._n_states), dtype=np.float64)
final_input_jacobian_trajectory = np.nan * np.ones((N, self._n_states, self._n_inputs), dtype=np.float64)
state_trajectory[0] = current_state
for idx_u, u in enumerate(input_trajectory):
state_next, final_input, state_jacobian, final_input_jacobian = self._dynamics_and_jacobian(
state_trajectory[idx_u], u
)
state_trajectory[idx_u + 1] = state_next
final_input_trajectory[idx_u] = final_input
state_jacobian_trajectory[idx_u] = state_jacobian
final_input_jacobian_trajectory[idx_u] = final_input_jacobian
iterate = ILQRIterate(
state_trajectory=state_trajectory, # type: ignore
input_trajectory=final_input_trajectory, # type: ignore
state_jacobian_trajectory=state_jacobian_trajectory, # type: ignore
input_jacobian_trajectory=final_input_jacobian_trajectory, # type: ignore
)
return iterate
def _dynamics_and_jacobian(
self, current_state: DoubleMatrix, current_input: DoubleMatrix
) -> Tuple[DoubleMatrix, DoubleMatrix, DoubleMatrix, DoubleMatrix]:
"""
Propagates the state forward by one step and computes the corresponding state and input Jacobian matrices.
We also impose all constraints here to ensure the current input and next state are always feasible.
:param current_state: The current state z_k.
:param current_input: The applied input u_k.
:return: The next state z_{k+1}, (possibly modified) input u_k, and state (df/dz) and input (df/du) Jacobians.
"""
x, y, heading, velocity, steering_angle = current_state
# Check steering angle is in expected range for valid Jacobian matrices.
assert (
np.abs(steering_angle) < np.pi / 2.0
), f"The steering angle {steering_angle} is outside expected limits. There is a singularity at delta = np.pi/2."
# Input constraints: clip inputs within bounds and then use.
current_input = self._clip_inputs(current_input)
acceleration, steering_rate = current_input
# Euler integration of bicycle model.
discretization_time = self._solver_params.discretization_time
wheelbase = self._solver_params.wheelbase
next_state: DoubleMatrix = np.copy(current_state)
next_state[0] += velocity * np.cos(heading) * discretization_time
next_state[1] += velocity * np.sin(heading) * discretization_time
next_state[2] += velocity * np.tan(steering_angle) / wheelbase * discretization_time
next_state[3] += acceleration * discretization_time
next_state[4] += steering_rate * discretization_time
# Constrain heading angle to lie within +/- pi.
next_state[2] = principal_value(next_state[2])
# State constraints: clip the steering_angle within bounds and update steering_rate accordingly.
next_steering_angle = self._clip_steering_angle(next_state[4])
applied_steering_rate = (next_steering_angle - steering_angle) / discretization_time
next_state[4] = next_steering_angle
current_input[1] = applied_steering_rate
# Now we construct and populate the state and input Jacobians.
state_jacobian: DoubleMatrix = np.eye(self._n_states, dtype=np.float64)
input_jacobian: DoubleMatrix = np.zeros((self._n_states, self._n_inputs), dtype=np.float64)
# Set a nonzero velocity to handle issues when linearizing at (near) zero velocity.
# This helps e.g. when the vehicle is stopped with zero steering angle and needs to accelerate/turn.
# Without this, the A matrix will indicate steering has no impact on heading due to Euler discretization.
# There will be a rank drop in the controllability matrix, so the discrete-time algebraic Riccati equation
# may not have a solution (uncontrollable subspace) or it may not be unique.
min_velocity_linearization = self._solver_params.min_velocity_linearization
if -min_velocity_linearization <= velocity and velocity <= min_velocity_linearization:
sign_velocity = 1.0 if velocity >= 0.0 else -1.0
velocity = sign_velocity * min_velocity_linearization
state_jacobian[0, 2] = -velocity * np.sin(heading) * discretization_time
state_jacobian[0, 3] = np.cos(heading) * discretization_time
state_jacobian[1, 2] = velocity * np.cos(heading) * discretization_time
state_jacobian[1, 3] = np.sin(heading) * discretization_time
state_jacobian[2, 3] = np.tan(steering_angle) / wheelbase * discretization_time
state_jacobian[2, 4] = velocity * discretization_time / (wheelbase * np.cos(steering_angle) ** 2)
input_jacobian[3, 0] = discretization_time
input_jacobian[4, 1] = discretization_time
return next_state, current_input, state_jacobian, input_jacobian
####################################################################################################################
# Core LQR implementation.
####################################################################################################################
def _run_lqr_backward_recursion(
self,
current_iterate: ILQRIterate,
reference_trajectory: DoubleMatrix,
) -> ILQRInputPolicy:
"""
Computes the locally optimal affine state feedback policy by applying dynamic programming to linear perturbation
dynamics about a specified linearization trajectory. We include a trust region penalty as part of the cost.
:param current_iterate: Contains all relevant linearization information needed to compute LQR policy.
:param reference_trajectory: The desired state trajectory we are tracking.
:return: An affine state feedback policy - state feedback matrices and feedforward inputs found using LQR.
"""
state_trajectory = current_iterate.state_trajectory
input_trajectory = current_iterate.input_trajectory
state_jacobian_trajectory = current_iterate.state_jacobian_trajectory
input_jacobian_trajectory = current_iterate.input_jacobian_trajectory
# Check reference matches the expected shape.
assert reference_trajectory.shape == state_trajectory.shape, "The reference trajectory has incorrect shape."
# Compute nominal error trajectory.
error_state_trajectory = state_trajectory - reference_trajectory
error_state_trajectory[:, 2] = principal_value(error_state_trajectory[:, 2])
# The value function has the form V_k(\Delta z_k) = \Delta z_k^T P_k \Delta z_k + 2 \rho_k^T \Delta z_k.
# So p_current = P_k is related to the Hessian of the value function at the current timestep.
# And rho_current = rho_k is part of the linear cost term in the value function at the current timestep.
p_current = self._state_cost_matrix + self._state_trust_region_cost_matrix
rho_current = self._state_cost_matrix @ error_state_trajectory[-1]
# The optimal LQR policy has the form \Delta u_k^* = K_k \Delta z_k + \kappa_k
# We refer to K_k as state_feedback_matrix and \kappa_k as feedforward input in the code below.
N = len(input_trajectory)
state_feedback_matrices = np.nan * np.ones((N, self._n_inputs, self._n_states), dtype=np.float64)
feedforward_inputs = np.nan * np.ones((N, self._n_inputs), dtype=np.float64)
for i in reversed(range(N)):
A = state_jacobian_trajectory[i]
B = input_jacobian_trajectory[i]
u = input_trajectory[i]
error = error_state_trajectory[i]
# Compute the optimal input policy for this timestep.
inverse_matrix_term = np.linalg.inv(
self._input_cost_matrix + self._input_trust_region_cost_matrix + B.T @ p_current @ B
) # invertible since we checked input_cost / input_trust_region_cost are positive definite during creation.
state_feedback_matrix = -inverse_matrix_term @ B.T @ p_current @ A
feedforward_input = -inverse_matrix_term @ (self._input_cost_matrix @ u + B.T @ rho_current)
# Compute the optimal value function for this timestep.
a_closed_loop = A + B @ state_feedback_matrix
p_prior = (
self._state_cost_matrix
+ self._state_trust_region_cost_matrix
+ state_feedback_matrix.T @ self._input_cost_matrix @ state_feedback_matrix
+ state_feedback_matrix.T @ self._input_trust_region_cost_matrix @ state_feedback_matrix
+ a_closed_loop.T @ p_current @ a_closed_loop
)
rho_prior = (
self._state_cost_matrix @ error
+ state_feedback_matrix.T @ self._input_cost_matrix @ (feedforward_input + u)
+ state_feedback_matrix.T @ self._input_trust_region_cost_matrix @ feedforward_input
+ a_closed_loop.T @ p_current @ B @ feedforward_input
+ a_closed_loop.T @ rho_current
)
p_current = p_prior
rho_current = rho_prior
state_feedback_matrices[i] = state_feedback_matrix
feedforward_inputs[i] = feedforward_input
lqr_input_policy = ILQRInputPolicy(
state_feedback_matrices=state_feedback_matrices, # type: ignore
feedforward_inputs=feedforward_inputs, # type: ignore
)
return lqr_input_policy
def _update_inputs_with_policy(
self,
current_iterate: ILQRIterate,
lqr_input_policy: ILQRInputPolicy,
) -> DoubleMatrix:
"""
Used to update an iterate of iLQR by applying a perturbation input policy for local cost improvement.
:param current_iterate: Contains the state and input trajectory about which we linearized.
:param lqr_input_policy: Contains the LQR policy to apply.
:return: The next input trajectory found by applying the LQR policy.
"""
state_trajectory = current_iterate.state_trajectory
input_trajectory = current_iterate.input_trajectory
# Trajectory of state perturbations while applying feedback policy.
# Starts with zero as the initial states match exactly, only later states might vary.
delta_state_trajectory = np.nan * np.ones((len(input_trajectory) + 1, self._n_states), dtype=np.float64)
delta_state_trajectory[0] = [0.0] * self._n_states
# This is the updated input trajectory we will return after applying the input perturbations.
input_next_trajectory = np.nan * np.ones_like(input_trajectory, dtype=np.float64)
zip_object = zip(
input_trajectory,
state_trajectory[:-1],
state_trajectory[1:],
lqr_input_policy.state_feedback_matrices,
lqr_input_policy.feedforward_inputs,
)
for input_idx, (input_lin, state_lin, state_lin_next, state_feedback_matrix, feedforward_input) in enumerate(
zip_object
):
# Compute locally optimal input perturbation.
delta_state = delta_state_trajectory[input_idx]
delta_input = state_feedback_matrix @ delta_state + feedforward_input
# Apply state and input perturbation.
input_perturbed = input_lin + delta_input
state_perturbed = state_lin + delta_state
state_perturbed[2] = principal_value(state_perturbed[2])
# Run dynamics with perturbed state/inputs to get next state.
# We get the actually applied input since it might have been clipped/modified to satisfy constraints.
state_perturbed_next, input_perturbed, _, _ = self._dynamics_and_jacobian(state_perturbed, input_perturbed)
# Compute next state perturbation given next state.
delta_state_next = state_perturbed_next - state_lin_next
delta_state_next[2] = principal_value(delta_state_next[2])
delta_state_trajectory[input_idx + 1] = delta_state_next
input_next_trajectory[input_idx] = input_perturbed
assert ~np.any(np.isnan(input_next_trajectory)), "All next inputs should be valid float values."
return input_next_trajectory # type: ignore |