Spaces:
Paused
Paused
File size: 17,632 Bytes
7f3c2df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
from logging import raiseExceptions
import numpy as np
import torch
import pdb
from ..utils import geometry_utils as GeoUtils
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d
import random
from .forward_sampler import ForwardSampler
STATE_INDEX = [0, 1, 2, 4]
device = "cuda" if torch.cuda.is_available() else "cpu"
def mean_control_effort_coefficients(x0, dx0, xf, dxf):
"""Returns `(c4, c3, c2)` corresponding to `c4 * tf**-4 + c3 * tf**-3 + c2 * tf**-2`."""
return (12 * (x0 - xf) ** 2, 12 * (dx0 + dxf) * (x0 - xf), 4 * dx0 ** 2 + 4 * dx0 * dxf + 4 * dxf ** 2)
def cubic_spline_coefficients(x0, dx0, xf, dxf, tf):
return (x0, dx0, -2 * dx0 / tf - dxf / tf - 3 * x0 / tf ** 2 + 3 * xf / tf ** 2,
dx0 / tf ** 2 + dxf / tf ** 2 + 2 * x0 / tf ** 3 - 2 * xf / tf ** 3)
def compute_interpolating_spline(state_0, state_f, tf):
dx0, dy0 = state_0[..., 2] * \
torch.cos(state_0[..., 3]), state_0[..., 2] * \
torch.sin(state_0[..., 3])
dxf, dyf = state_f[..., 2] * \
torch.cos(state_f[..., 3]), state_f[..., 2] * \
torch.sin(state_f[..., 3])
tf = tf * torch.ones_like(state_0[..., 0])
return (
torch.stack(cubic_spline_coefficients(
state_0[..., 0], dx0, state_f[..., 0], dxf, tf), -1),
torch.stack(cubic_spline_coefficients(
state_0[..., 1], dy0, state_f[..., 1], dyf, tf), -1),
tf,
)
def compute_spline_xyvaqrt(x_coefficients, y_coefficients, tf, N=10):
t = torch.arange(N).unsqueeze(0).to(tf.device) * tf.unsqueeze(-1) / (N - 1)
tp = t[..., None] ** torch.arange(4).to(tf.device)
dtp = t[..., None] ** torch.tensor([0, 0, 1, 2]
).to(tf.device) * torch.arange(4).to(tf.device)
ddtp = t[..., None] ** torch.tensor([0, 0, 0, 1]).to(
tf.device) * torch.tensor([0, 0, 2, 6]).to(tf.device)
x_coefficients = x_coefficients.unsqueeze(-1)
y_coefficients = y_coefficients.unsqueeze(-1)
vx = dtp @ x_coefficients
vy = dtp @ y_coefficients
v = torch.hypot(vx, vy)
v_pos = torch.clip(v, min=1e-4)
ax = ddtp @ x_coefficients
ay = ddtp @ y_coefficients
a = (ax * vx + ay * vy) / v_pos
r = (-ax * vy + ay * vx) / (v_pos ** 2)
yaw = torch.atan2(vy, vx)
return torch.cat((
tp @ x_coefficients,
tp @ y_coefficients,
v,
a,
yaw,
r,
t.unsqueeze(-1),
), -1)
def patch_yaw_low_speed(traj):
idx = traj[...,]
def mean_control_effort_coefficients(x0, dx0, xf, dxf):
"""Returns `(c4, c3, c2)` corresponding to `c4 * tf**-4 + c3 * tf**-3 + c2 * tf**-2`."""
return (12 * (x0 - xf) ** 2, 12 * (dx0 + dxf) * (x0 - xf), 4 * dx0 ** 2 + 4 * dx0 * dxf + 4 * dxf ** 2)
class SplinePlanner(object):
def __init__(self, device, dx_grid=None, dy_grid=None, acce_grid=None, dyaw_grid=None, max_steer=0.5, max_rvel=8,
acce_bound=[-6, 4], vbound=[-2.0, 30], spline_order=3, N_seg=10, low_speed_threshold=2.0, seed=0):
self.spline_order = spline_order
self.device = device
assert spline_order == 3
if dx_grid is None:
# self.dx_grid = torch.tensor([-4., 0, 4.]).to(self.device)
self.dx_grid = torch.tensor([0.]).to(self.device)
else:
self.dx_grid = torch.tensor(dx_grid).to(self.device)
if dy_grid is None:
self.dy_grid = torch.tensor([-3., -1.5, 0, 1.5, 3.]).to(self.device)
else:
self.dy_grid = torch.tensor(dy_grid).to(self.device)
self.dy_grid_lane = torch.tensor([-2., 0, 2., ]).to(self.device)
if acce_grid is None:
# self.acce_grid = torch.tensor([-1., -0.5, 0., 0.5, 1.]).to(self.device)
self.acce_grid = torch.tensor([-1., 0., 1.]).to(self.device)
else:
self.acce_grid = torch.tensor(acce_grid).to(self.device)
if dyaw_grid is None:
self.dyaw_grid = torch.tensor(
[-np.pi / 6, 0, np.pi / 6]).to(self.device)
else:
self.dyaw_grid = torch.tensor(dyaw_grid).to(self.device)
self.max_steer = max_steer
self.max_rvel = max_rvel
self.psi_bound = [-np.pi * 0.75, np.pi * 0.75]
self.acce_bound = acce_bound
self.vbound = vbound
self.N_seg = N_seg
self.low_speed_threshold = low_speed_threshold
self.forward_sampler = ForwardSampler(acce_grid=self.acce_grid, dhm_grid=torch.linspace(-0.7, 0.7, 9),
dhf_grid=[-0.4, 0, 0.4], dt=0.1, device=self.device)
torch.manual_seed(seed)
def calc_trajectories(self, x0, tf, xf, N=None):
if N is None:
N = self.N_seg
if x0.ndim == 1:
x0_tile = x0.tile(xf.shape[0], 1)
xc, yc, tf = compute_interpolating_spline(x0_tile, xf, tf)
elif x0.ndim == xf.ndim:
xc, yc, tf = compute_interpolating_spline(x0, xf, tf)
else:
raise ValueError("wrong dimension for x0")
traj = compute_spline_xyvaqrt(xc, yc, tf, N)
return traj
def gen_terminals_lane(self, x0, tf, lanes):
if lanes is None or len(lanes) == 0:
return self.gen_terminals(x0, tf)
gs = [self.dx_grid.shape[0], self.dy_grid_lane.shape[0], self.acce_grid.shape[0]]
dx = self.dx_grid[:, None, None, None].repeat(1, gs[1], gs[2], 1).flatten()
dy = self.dy_grid_lane[None, :, None, None].repeat(gs[0], 1, gs[2], 1).flatten()
dv = self.acce_grid[None, None, :, None].repeat(
gs[0], gs[1], 1, 1).flatten() * tf
xf = list()
if x0.ndim == 1:
for lane in lanes:
f, p_start = lane
if isinstance(p_start, np.ndarray):
p_start = torch.from_numpy(p_start).to(x0.device)
elif isinstance(p_start, torch.Tensor):
p_start = p_start.to(x0.device)
offset = x0[:2] - p_start[:2]
s_offset = offset[0] * \
torch.cos(p_start[2]) + offset[1] * torch.sin(p_start[2])
ds = dx + dv / 2 * tf + x0[2:3] * tf
ss = ds + s_offset
xyyaw = torch.from_numpy(f(ss.cpu().numpy())).type(
torch.float).to(x0.device)
xyyaw[..., 1] += dy
xf.append(
torch.cat((xyyaw[:, :2], dv.reshape(-1, 1) + x0[2:3], xyyaw[:, 2:]), -1))
# adding the end points not fixated on lane
xf_straight = torch.stack([ds, dy, dv + x0[2], x0[3].tile(ds.shape[0])], -1)
xf.append(xf_straight)
elif x0.ndim == 2:
for lane in lanes:
f, p_start = lane
if isinstance(p_start, np.ndarray):
p_start = torch.from_numpy(p_start).to(x0.device)
elif isinstance(p_start, torch.Tensor):
p_start = p_start.to(x0.device)
offset = x0[:, :2] - p_start[None, :2]
s_offset = offset[:, 0] * torch.cos(p_start[2]) + offset[:, 1] * torch.sin(p_start[2])
ds = (dx + dv / 2 * tf).unsqueeze(0) + x0[:, 2:3] * tf
ss = ds + s_offset.unsqueeze(-1)
xyyaw = torch.from_numpy(f(ss.cpu().numpy())).type(
torch.float).to(x0.device)
xyyaw[..., 1] += dy
xf.append(torch.cat((xyyaw[..., :2], dv.tile(
x0.shape[0], 1).unsqueeze(-1) + x0[:, None, 2:3], xyyaw[..., 2:]), -1))
# adding the end points not fixated on lane
xf_straight = torch.stack([ds, dy.tile(x0.shape[0], 1), dv.tile(x0.shape[0], 1) + x0[:, None, 2],
x0[:, None, 3].tile(1, ds.shape[1])], -1)
xf.append(xf_straight)
else:
raise ValueError("x0 must have dimension 1 or 2")
xf = torch.cat(xf, -2)
return xf
def gen_terminals(self, x0, tf):
gs = [self.dx_grid.shape[0], self.dy_grid.shape[0],
self.acce_grid.shape[0], self.dyaw_grid.shape[0]]
dx = self.dx_grid[:, None, None, None].repeat(
1, gs[1], gs[2], gs[3]).flatten()
dy = self.dy_grid[None, :, None, None].repeat(
gs[0], 1, gs[2], gs[3]).flatten()
dv = tf * self.acce_grid[None, None, :,
None].repeat(gs[0], gs[1], 1, gs[3]).flatten()
dyaw = self.dyaw_grid[None, None, None, :].repeat(
gs[0], gs[1], gs[2], 1).flatten()
delta_x = torch.stack([dx, dy, dv, dyaw], -1)
if x0.ndim == 1:
xy = torch.cat(
(delta_x[:, 0:1] + delta_x[:, 2:3] / 2 * tf + x0[2:3] * tf, delta_x[:, 1:2]), -1)
rotated_delta_xy = GeoUtils.batch_rotate_2D(xy, x0[3])
refpsi = torch.arctan2(rotated_delta_xy[..., 1], rotated_delta_xy[..., 0])
rotated_xy = rotated_delta_xy + x0[:2]
return torch.cat((rotated_xy, delta_x[:, 2:3] + x0[2:3], delta_x[:, 3:] + refpsi.unsqueeze(-1)), -1)
elif x0.ndim == 2:
delta_x = torch.tile(delta_x, [x0.shape[0], 1, 1])
xy = torch.cat(
(delta_x[:, :, 0:1] + delta_x[:, :, 2:3] / 2 * tf + x0[:, None, 2:3] * tf, delta_x[:, :, 1:2]), -1)
rotated_delta_xy = GeoUtils.batch_rotate_2D(xy, x0[:, 3:4])
refpsi = torch.arctan2(rotated_delta_xy[..., 1], rotated_delta_xy[..., 0])
rotated_xy = rotated_delta_xy + x0[:, None, :2]
return torch.cat(
(rotated_xy, delta_x[:, :, 2:3] + x0[:, None, 2:3], delta_x[:, :, 3:] + refpsi.unsqueeze(-1)), -1)
else:
raise ValueError("x0 must have dimension 1 or 2")
def feasible_flag(self, traj, xf):
diff = traj[..., -1, STATE_INDEX] - xf
feas_flag = ((traj[..., 2] >= self.vbound[0]) & (traj[..., 2] < self.vbound[1]) &
(traj[..., 4] >= self.psi_bound[0]) & (traj[..., 4] < self.psi_bound[1]) &
(traj[..., 3] >= self.acce_bound[0]) & (traj[..., 3] <= self.acce_bound[1]) &
(torch.abs(traj[..., 5] * traj[..., 2]) <= self.max_rvel) & (
torch.clip(torch.abs(traj[..., 2]), min=0.5) * self.max_steer >= torch.abs(
traj[..., 5]))).all(1) & (
diff.abs() < 5e-3).all(-1)
return feas_flag
def gen_trajectories(self, x0, tf, lanes=None, dyn_filter=True, N=None, lane_only=False):
if N is None:
N = self.N_seg
if lanes is not None:
if isinstance(lanes, torch.Tensor):
lanes = lanes.cpu().numpy()
lane_interp = [GeoUtils.interp_lanes(lane) for lane in lanes]
xf_lane = self.gen_terminals_lane(
x0, tf, lane_interp)
else:
xf_lane = None
if lane_only:
assert xf_lane is not None
xf_set = xf_lane
else:
xf_set = self.gen_terminals(x0, tf)
if xf_lane is not None:
xf_set = torch.cat((xf_lane, xf_set), 0)
x0[..., 2] = torch.clip(x0[..., 2], min=1e-3)
xf_set[..., 2] = torch.clip(xf_set[..., 2], min=1e-3)
# x, y, v, a, yaw,r, t
traj = self.calc_trajectories(x0, tf, xf_set, N)
if dyn_filter:
feas_flag = self.feasible_flag(traj, xf_set)
traj = traj[feas_flag]
xf = xf_set[feas_flag]
traj = traj[..., 1:, :] # remove the first time step
if x0[2] < self.low_speed_threshold:
# call forward sampler when velocity is low
extra_traj = self.forward_sampler.sample_trajs(x0.unsqueeze(0), int(tf / self.forward_sampler.dt)).squeeze(
0)
f = interp1d(np.arange(1, extra_traj.shape[-2] + 1) * self.forward_sampler.dt, extra_traj.cpu().numpy(),
axis=-2)
extra_traj = torch.from_numpy(f(np.arange(1, N) * tf / N)).to(self.device)
traj = torch.cat((traj, extra_traj), 0)
return traj, traj[..., -1, STATE_INDEX]
@staticmethod
def get_similarity_flag(x0, x1, thres=[2.0, 0.5, 2.0, np.pi / 12]):
thres = torch.tensor(thres, device=x0.device)
diff = x0.unsqueeze(-3) - x1.unsqueeze(-2)
flag = diff.abs() < thres
flag = flag.all(-1).any(-1)
return flag
def gen_terminals_hardcoded(self, x0_set, tf):
X0, Y0, v0, psi0 = x0_set[..., 0:1], x0_set[..., 1:2], x0_set[..., 2:3], x0_set[..., 3:]
xf_set = list()
# drive straight
xf_straight = torch.cat((X0 + v0 * tf * torch.cos(psi0), Y0 + v0 * tf * torch.sin(psi0), v0, psi0),
-1).unsqueeze(1)
xf_set.append(xf_straight)
# hard brake
decel = torch.clip(-v0 / tf, min=self.acce_bound[0])
xf_brake = torch.cat((X0 + (v0 + decel * 0.5 * tf) * tf * torch.cos(psi0),
Y0 + (v0 + decel * 0.5 * tf) * tf * torch.sin(psi0), v0 + decel * tf, psi0),
-1).unsqueeze(1)
xf_set.append(xf_brake)
xf_set = torch.cat(xf_set, 1)
return xf_set
def gen_trajectory_batch(self, x0_set, tf, lanes=None, dyn_filter=True, N=None, max_children=None):
if N is None:
N = self.N_seg
device = x0_set.device
xf_set_sample = self.gen_terminals(x0_set, tf)
importance_score = torch.rand(xf_set_sample.shape[:2], device=device)
xf_set_hardcoded = self.gen_terminals_hardcoded(x0_set, tf)
xf_set = torch.cat((xf_set_sample, xf_set_hardcoded), 1)
importance_score = torch.cat((importance_score, 2 * torch.ones(xf_set_hardcoded.shape[:2], device=device)), 1)
if lanes is not None:
lane_interp = [GeoUtils.interp_lanes(lane) for lane in lanes]
xf_set_lane = self.gen_terminals_lane(x0_set, tf, lane_interp)
xf_set = torch.cat((xf_set, xf_set_lane), -2)
importance_score = torch.cat((importance_score, torch.ones(xf_set_lane.shape[:2], device=x0_set.device)), 1)
x0_set[..., 2] = torch.clip(x0_set[..., 2], min=1e-3)
xf_set[..., 2] = torch.clip(xf_set[..., 2], min=1e-3)
num_node = x0_set.shape[0]
num = xf_set.shape[1]
x0_tiled = x0_set.repeat_interleave(num, 0)
xf_tiled = xf_set.reshape(-1, xf_set.shape[-1])
traj = self.calc_trajectories(x0_tiled, tf, xf_tiled, N)
if dyn_filter:
feas_flag = self.feasible_flag(traj, xf_tiled)
else:
feas_flag = torch.ones(
num * num_node, dtype=torch.bool).to(x0_set.device)
feas_flag = feas_flag.reshape(num_node, num)
traj = traj.reshape(num_node, num, *traj.shape[1:])
if (x0_set[:, 2] < self.low_speed_threshold).any():
extra_traj = self.forward_sampler.sample_trajs(x0_set, int(tf / self.forward_sampler.dt))
f = interp1d(np.arange(1, extra_traj.shape[-2] + 1) * self.forward_sampler.dt, extra_traj.cpu().numpy(),
axis=-2, bounds_error=False, fill_value="extrapolate")
extra_traj = torch.from_numpy(f(np.arange(0, N) * tf / N)).to(self.device)
traj = torch.cat((traj, extra_traj), 1)
extra_importance_score = torch.rand(extra_traj.shape[:2], device=device)
importance_score = torch.cat((importance_score, extra_importance_score), 1)
feas_flag = torch.cat((feas_flag, torch.ones(extra_traj.shape[:2], device=device)), 1)
importance_score = importance_score * feas_flag
chosen_idx = [torch.where(importance_score[i])[0].tolist() for i in range(num_node)]
if max_children is not None:
chosen_idx = [idx if len(idx) <= max_children else torch.topk(importance_score[i], max_children)[1] for
i, idx in enumerate(chosen_idx)]
traj_batch = [traj[i, chosen_idx[i], 1:] for i in range(num_node)]
return traj_batch
def gen_trajectory_tree(self, x0, tf, n_layers, dyn_filter=True, N=None):
if N is None:
N = self.N_seg
trajs = list()
nodes = [x0[None, :]]
for i in range(n_layers):
xf = self.gen_terminals(nodes[i], tf)
x0i = torch.tile(nodes[i], [xf.shape[1], 1])
xf = xf.reshape(-1, xf.shape[-1])
traj = self.calc_trajectories(x0i, tf, xf, N)
if dyn_filter:
feas_flag = self.feasible_flag(traj, xf)
traj = traj[feas_flag]
xf = xf[feas_flag]
trajs.append(traj)
nodes.append(xf.reshape(-1, xf.shape[-1]))
return trajs, nodes[1:]
if __name__ == "__main__":
planner = SplinePlanner("cuda")
x0 = torch.tensor([1., 2., 1., 0.]).cuda()
tf = 5
traj, xf = planner.gen_trajectories(x0, tf)
trajs = planner.gen_trajectory_batch(xf, tf)
# x, y, v, a, yaw,r, t = traj
msize = 12
trajs, nodes = planner.gen_trajectory_tree(x0, tf, 2)
x0 = x0.cpu().numpy()
traj = traj.cpu().numpy()
plt.figure(figsize=(20, 10))
plt.plot(x0[0], x0[1], marker="o", color="b", markersize=msize)
for node, traj in zip(nodes, trajs):
node = node.cpu().numpy()
traj = traj.cpu().numpy()
x = traj[..., 0]
y = traj[..., 1]
plt.plot(x.T, y.T, color="k")
for p in node:
plt.plot(p[0], p[1], marker="o", color="b", markersize=msize)
plt.show()
|