File size: 17,632 Bytes
7f3c2df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
from logging import raiseExceptions
import numpy as np
import torch
import pdb
from ..utils import geometry_utils as GeoUtils
import matplotlib.pyplot as plt
from scipy.interpolate import interp1d
import random

from .forward_sampler import ForwardSampler

STATE_INDEX = [0, 1, 2, 4]

device = "cuda" if torch.cuda.is_available() else "cpu"


def mean_control_effort_coefficients(x0, dx0, xf, dxf):
    """Returns `(c4, c3, c2)` corresponding to `c4 * tf**-4 + c3 * tf**-3 + c2 * tf**-2`."""
    return (12 * (x0 - xf) ** 2, 12 * (dx0 + dxf) * (x0 - xf), 4 * dx0 ** 2 + 4 * dx0 * dxf + 4 * dxf ** 2)


def cubic_spline_coefficients(x0, dx0, xf, dxf, tf):
    return (x0, dx0, -2 * dx0 / tf - dxf / tf - 3 * x0 / tf ** 2 + 3 * xf / tf ** 2,
            dx0 / tf ** 2 + dxf / tf ** 2 + 2 * x0 / tf ** 3 - 2 * xf / tf ** 3)


def compute_interpolating_spline(state_0, state_f, tf):
    dx0, dy0 = state_0[..., 2] * \
               torch.cos(state_0[..., 3]), state_0[..., 2] * \
               torch.sin(state_0[..., 3])
    dxf, dyf = state_f[..., 2] * \
               torch.cos(state_f[..., 3]), state_f[..., 2] * \
               torch.sin(state_f[..., 3])
    tf = tf * torch.ones_like(state_0[..., 0])
    return (
        torch.stack(cubic_spline_coefficients(
            state_0[..., 0], dx0, state_f[..., 0], dxf, tf), -1),
        torch.stack(cubic_spline_coefficients(
            state_0[..., 1], dy0, state_f[..., 1], dyf, tf), -1),
        tf,
    )


def compute_spline_xyvaqrt(x_coefficients, y_coefficients, tf, N=10):
    t = torch.arange(N).unsqueeze(0).to(tf.device) * tf.unsqueeze(-1) / (N - 1)
    tp = t[..., None] ** torch.arange(4).to(tf.device)
    dtp = t[..., None] ** torch.tensor([0, 0, 1, 2]
                                       ).to(tf.device) * torch.arange(4).to(tf.device)
    ddtp = t[..., None] ** torch.tensor([0, 0, 0, 1]).to(
        tf.device) * torch.tensor([0, 0, 2, 6]).to(tf.device)
    x_coefficients = x_coefficients.unsqueeze(-1)
    y_coefficients = y_coefficients.unsqueeze(-1)
    vx = dtp @ x_coefficients
    vy = dtp @ y_coefficients
    v = torch.hypot(vx, vy)
    v_pos = torch.clip(v, min=1e-4)
    ax = ddtp @ x_coefficients
    ay = ddtp @ y_coefficients
    a = (ax * vx + ay * vy) / v_pos
    r = (-ax * vy + ay * vx) / (v_pos ** 2)
    yaw = torch.atan2(vy, vx)
    return torch.cat((
        tp @ x_coefficients,
        tp @ y_coefficients,
        v,
        a,
        yaw,
        r,
        t.unsqueeze(-1),
    ), -1)


def patch_yaw_low_speed(traj):
    idx = traj[...,]


def mean_control_effort_coefficients(x0, dx0, xf, dxf):
    """Returns `(c4, c3, c2)` corresponding to `c4 * tf**-4 + c3 * tf**-3 + c2 * tf**-2`."""
    return (12 * (x0 - xf) ** 2, 12 * (dx0 + dxf) * (x0 - xf), 4 * dx0 ** 2 + 4 * dx0 * dxf + 4 * dxf ** 2)


class SplinePlanner(object):
    def __init__(self, device, dx_grid=None, dy_grid=None, acce_grid=None, dyaw_grid=None, max_steer=0.5, max_rvel=8,
                 acce_bound=[-6, 4], vbound=[-2.0, 30], spline_order=3, N_seg=10, low_speed_threshold=2.0, seed=0):
        self.spline_order = spline_order
        self.device = device
        assert spline_order == 3
        if dx_grid is None:
            # self.dx_grid = torch.tensor([-4., 0, 4.]).to(self.device)
            self.dx_grid = torch.tensor([0.]).to(self.device)
        else:
            self.dx_grid = torch.tensor(dx_grid).to(self.device)
        if dy_grid is None:
            self.dy_grid = torch.tensor([-3., -1.5, 0, 1.5, 3.]).to(self.device)
        else:
            self.dy_grid = torch.tensor(dy_grid).to(self.device)
        self.dy_grid_lane = torch.tensor([-2., 0, 2., ]).to(self.device)
        if acce_grid is None:
            # self.acce_grid = torch.tensor([-1., -0.5, 0., 0.5, 1.]).to(self.device)
            self.acce_grid = torch.tensor([-1., 0., 1.]).to(self.device)
        else:
            self.acce_grid = torch.tensor(acce_grid).to(self.device)
        if dyaw_grid is None:
            self.dyaw_grid = torch.tensor(
                [-np.pi / 6, 0, np.pi / 6]).to(self.device)
        else:
            self.dyaw_grid = torch.tensor(dyaw_grid).to(self.device)
        self.max_steer = max_steer
        self.max_rvel = max_rvel
        self.psi_bound = [-np.pi * 0.75, np.pi * 0.75]
        self.acce_bound = acce_bound
        self.vbound = vbound
        self.N_seg = N_seg
        self.low_speed_threshold = low_speed_threshold
        self.forward_sampler = ForwardSampler(acce_grid=self.acce_grid, dhm_grid=torch.linspace(-0.7, 0.7, 9),
                                              dhf_grid=[-0.4, 0, 0.4], dt=0.1, device=self.device)
        torch.manual_seed(seed)

    def calc_trajectories(self, x0, tf, xf, N=None):
        if N is None:
            N = self.N_seg
        if x0.ndim == 1:
            x0_tile = x0.tile(xf.shape[0], 1)
            xc, yc, tf = compute_interpolating_spline(x0_tile, xf, tf)
        elif x0.ndim == xf.ndim:
            xc, yc, tf = compute_interpolating_spline(x0, xf, tf)
        else:
            raise ValueError("wrong dimension for x0")
        traj = compute_spline_xyvaqrt(xc, yc, tf, N)
        return traj

    def gen_terminals_lane(self, x0, tf, lanes):
        if lanes is None or len(lanes) == 0:
            return self.gen_terminals(x0, tf)

        gs = [self.dx_grid.shape[0], self.dy_grid_lane.shape[0], self.acce_grid.shape[0]]
        dx = self.dx_grid[:, None, None, None].repeat(1, gs[1], gs[2], 1).flatten()
        dy = self.dy_grid_lane[None, :, None, None].repeat(gs[0], 1, gs[2], 1).flatten()
        dv = self.acce_grid[None, None, :, None].repeat(
            gs[0], gs[1], 1, 1).flatten() * tf
        xf = list()
        if x0.ndim == 1:
            for lane in lanes:
                f, p_start = lane
                if isinstance(p_start, np.ndarray):
                    p_start = torch.from_numpy(p_start).to(x0.device)
                elif isinstance(p_start, torch.Tensor):
                    p_start = p_start.to(x0.device)
                offset = x0[:2] - p_start[:2]
                s_offset = offset[0] * \
                           torch.cos(p_start[2]) + offset[1] * torch.sin(p_start[2])
                ds = dx + dv / 2 * tf + x0[2:3] * tf
                ss = ds + s_offset
                xyyaw = torch.from_numpy(f(ss.cpu().numpy())).type(
                    torch.float).to(x0.device)
                xyyaw[..., 1] += dy
                xf.append(
                    torch.cat((xyyaw[:, :2], dv.reshape(-1, 1) + x0[2:3], xyyaw[:, 2:]), -1))
            # adding the end points not fixated on lane
            xf_straight = torch.stack([ds, dy, dv + x0[2], x0[3].tile(ds.shape[0])], -1)
            xf.append(xf_straight)
        elif x0.ndim == 2:
            for lane in lanes:
                f, p_start = lane
                if isinstance(p_start, np.ndarray):
                    p_start = torch.from_numpy(p_start).to(x0.device)
                elif isinstance(p_start, torch.Tensor):
                    p_start = p_start.to(x0.device)
                offset = x0[:, :2] - p_start[None, :2]
                s_offset = offset[:, 0] * torch.cos(p_start[2]) + offset[:, 1] * torch.sin(p_start[2])

                ds = (dx + dv / 2 * tf).unsqueeze(0) + x0[:, 2:3] * tf
                ss = ds + s_offset.unsqueeze(-1)
                xyyaw = torch.from_numpy(f(ss.cpu().numpy())).type(
                    torch.float).to(x0.device)
                xyyaw[..., 1] += dy
                xf.append(torch.cat((xyyaw[..., :2], dv.tile(
                    x0.shape[0], 1).unsqueeze(-1) + x0[:, None, 2:3], xyyaw[..., 2:]), -1))
            # adding the end points not fixated on lane
            xf_straight = torch.stack([ds, dy.tile(x0.shape[0], 1), dv.tile(x0.shape[0], 1) + x0[:, None, 2],
                                       x0[:, None, 3].tile(1, ds.shape[1])], -1)
            xf.append(xf_straight)
        else:
            raise ValueError("x0 must have dimension 1 or 2")
        xf = torch.cat(xf, -2)
        return xf

    def gen_terminals(self, x0, tf):
        gs = [self.dx_grid.shape[0], self.dy_grid.shape[0],
              self.acce_grid.shape[0], self.dyaw_grid.shape[0]]
        dx = self.dx_grid[:, None, None, None].repeat(
            1, gs[1], gs[2], gs[3]).flatten()
        dy = self.dy_grid[None, :, None, None].repeat(
            gs[0], 1, gs[2], gs[3]).flatten()
        dv = tf * self.acce_grid[None, None, :,
                  None].repeat(gs[0], gs[1], 1, gs[3]).flatten()
        dyaw = self.dyaw_grid[None, None, None, :].repeat(
            gs[0], gs[1], gs[2], 1).flatten()
        delta_x = torch.stack([dx, dy, dv, dyaw], -1)

        if x0.ndim == 1:
            xy = torch.cat(
                (delta_x[:, 0:1] + delta_x[:, 2:3] / 2 * tf + x0[2:3] * tf, delta_x[:, 1:2]), -1)
            rotated_delta_xy = GeoUtils.batch_rotate_2D(xy, x0[3])
            refpsi = torch.arctan2(rotated_delta_xy[..., 1], rotated_delta_xy[..., 0])
            rotated_xy = rotated_delta_xy + x0[:2]
            return torch.cat((rotated_xy, delta_x[:, 2:3] + x0[2:3], delta_x[:, 3:] + refpsi.unsqueeze(-1)), -1)
        elif x0.ndim == 2:
            delta_x = torch.tile(delta_x, [x0.shape[0], 1, 1])
            xy = torch.cat(
                (delta_x[:, :, 0:1] + delta_x[:, :, 2:3] / 2 * tf + x0[:, None, 2:3] * tf, delta_x[:, :, 1:2]), -1)
            rotated_delta_xy = GeoUtils.batch_rotate_2D(xy, x0[:, 3:4])
            refpsi = torch.arctan2(rotated_delta_xy[..., 1], rotated_delta_xy[..., 0])
            rotated_xy = rotated_delta_xy + x0[:, None, :2]
            return torch.cat(
                (rotated_xy, delta_x[:, :, 2:3] + x0[:, None, 2:3], delta_x[:, :, 3:] + refpsi.unsqueeze(-1)), -1)
        else:
            raise ValueError("x0 must have dimension 1 or 2")

    def feasible_flag(self, traj, xf):
        diff = traj[..., -1, STATE_INDEX] - xf

        feas_flag = ((traj[..., 2] >= self.vbound[0]) & (traj[..., 2] < self.vbound[1]) &
                     (traj[..., 4] >= self.psi_bound[0]) & (traj[..., 4] < self.psi_bound[1]) &
                     (traj[..., 3] >= self.acce_bound[0]) & (traj[..., 3] <= self.acce_bound[1]) &
                     (torch.abs(traj[..., 5] * traj[..., 2]) <= self.max_rvel) & (
                             torch.clip(torch.abs(traj[..., 2]), min=0.5) * self.max_steer >= torch.abs(
                         traj[..., 5]))).all(1) & (
                            diff.abs() < 5e-3).all(-1)

        return feas_flag

    def gen_trajectories(self, x0, tf, lanes=None, dyn_filter=True, N=None, lane_only=False):
        if N is None:
            N = self.N_seg
        if lanes is not None:
            if isinstance(lanes, torch.Tensor):
                lanes = lanes.cpu().numpy()
            lane_interp = [GeoUtils.interp_lanes(lane) for lane in lanes]
            xf_lane = self.gen_terminals_lane(
                x0, tf, lane_interp)
        else:
            xf_lane = None
        if lane_only:
            assert xf_lane is not None
            xf_set = xf_lane
        else:
            xf_set = self.gen_terminals(x0, tf)
            if xf_lane is not None:
                xf_set = torch.cat((xf_lane, xf_set), 0)
        x0[..., 2] = torch.clip(x0[..., 2], min=1e-3)
        xf_set[..., 2] = torch.clip(xf_set[..., 2], min=1e-3)

        # x, y, v, a, yaw,r, t
        traj = self.calc_trajectories(x0, tf, xf_set, N)
        if dyn_filter:
            feas_flag = self.feasible_flag(traj, xf_set)
            traj = traj[feas_flag]
            xf = xf_set[feas_flag]
        traj = traj[..., 1:, :]  # remove the first time step
        if x0[2] < self.low_speed_threshold:
            # call forward sampler when velocity is low
            extra_traj = self.forward_sampler.sample_trajs(x0.unsqueeze(0), int(tf / self.forward_sampler.dt)).squeeze(
                0)
            f = interp1d(np.arange(1, extra_traj.shape[-2] + 1) * self.forward_sampler.dt, extra_traj.cpu().numpy(),
                         axis=-2)
            extra_traj = torch.from_numpy(f(np.arange(1, N) * tf / N)).to(self.device)
            traj = torch.cat((traj, extra_traj), 0)
        return traj, traj[..., -1, STATE_INDEX]

    @staticmethod
    def get_similarity_flag(x0, x1, thres=[2.0, 0.5, 2.0, np.pi / 12]):
        thres = torch.tensor(thres, device=x0.device)
        diff = x0.unsqueeze(-3) - x1.unsqueeze(-2)
        flag = diff.abs() < thres
        flag = flag.all(-1).any(-1)
        return flag

    def gen_terminals_hardcoded(self, x0_set, tf):
        X0, Y0, v0, psi0 = x0_set[..., 0:1], x0_set[..., 1:2], x0_set[..., 2:3], x0_set[..., 3:]
        xf_set = list()
        # drive straight
        xf_straight = torch.cat((X0 + v0 * tf * torch.cos(psi0), Y0 + v0 * tf * torch.sin(psi0), v0, psi0),
                                -1).unsqueeze(1)
        xf_set.append(xf_straight)
        # hard brake
        decel = torch.clip(-v0 / tf, min=self.acce_bound[0])
        xf_brake = torch.cat((X0 + (v0 + decel * 0.5 * tf) * tf * torch.cos(psi0),
                              Y0 + (v0 + decel * 0.5 * tf) * tf * torch.sin(psi0), v0 + decel * tf, psi0),
                             -1).unsqueeze(1)
        xf_set.append(xf_brake)
        xf_set = torch.cat(xf_set, 1)
        return xf_set

    def gen_trajectory_batch(self, x0_set, tf, lanes=None, dyn_filter=True, N=None, max_children=None):
        if N is None:
            N = self.N_seg
        device = x0_set.device
        xf_set_sample = self.gen_terminals(x0_set, tf)
        importance_score = torch.rand(xf_set_sample.shape[:2], device=device)
        xf_set_hardcoded = self.gen_terminals_hardcoded(x0_set, tf)
        xf_set = torch.cat((xf_set_sample, xf_set_hardcoded), 1)
        importance_score = torch.cat((importance_score, 2 * torch.ones(xf_set_hardcoded.shape[:2], device=device)), 1)
        if lanes is not None:
            lane_interp = [GeoUtils.interp_lanes(lane) for lane in lanes]
            xf_set_lane = self.gen_terminals_lane(x0_set, tf, lane_interp)
            xf_set = torch.cat((xf_set, xf_set_lane), -2)
            importance_score = torch.cat((importance_score, torch.ones(xf_set_lane.shape[:2], device=x0_set.device)), 1)
        x0_set[..., 2] = torch.clip(x0_set[..., 2], min=1e-3)
        xf_set[..., 2] = torch.clip(xf_set[..., 2], min=1e-3)
        num_node = x0_set.shape[0]
        num = xf_set.shape[1]
        x0_tiled = x0_set.repeat_interleave(num, 0)
        xf_tiled = xf_set.reshape(-1, xf_set.shape[-1])
        traj = self.calc_trajectories(x0_tiled, tf, xf_tiled, N)
        if dyn_filter:
            feas_flag = self.feasible_flag(traj, xf_tiled)
        else:
            feas_flag = torch.ones(
                num * num_node, dtype=torch.bool).to(x0_set.device)
        feas_flag = feas_flag.reshape(num_node, num)
        traj = traj.reshape(num_node, num, *traj.shape[1:])
        if (x0_set[:, 2] < self.low_speed_threshold).any():
            extra_traj = self.forward_sampler.sample_trajs(x0_set, int(tf / self.forward_sampler.dt))
            f = interp1d(np.arange(1, extra_traj.shape[-2] + 1) * self.forward_sampler.dt, extra_traj.cpu().numpy(),
                         axis=-2, bounds_error=False, fill_value="extrapolate")
            extra_traj = torch.from_numpy(f(np.arange(0, N) * tf / N)).to(self.device)
            traj = torch.cat((traj, extra_traj), 1)
            extra_importance_score = torch.rand(extra_traj.shape[:2], device=device)
            importance_score = torch.cat((importance_score, extra_importance_score), 1)
            feas_flag = torch.cat((feas_flag, torch.ones(extra_traj.shape[:2], device=device)), 1)

        importance_score = importance_score * feas_flag
        chosen_idx = [torch.where(importance_score[i])[0].tolist() for i in range(num_node)]
        if max_children is not None:
            chosen_idx = [idx if len(idx) <= max_children else torch.topk(importance_score[i], max_children)[1] for
                          i, idx in enumerate(chosen_idx)]
        traj_batch = [traj[i, chosen_idx[i], 1:] for i in range(num_node)]
        return traj_batch

    def gen_trajectory_tree(self, x0, tf, n_layers, dyn_filter=True, N=None):
        if N is None:
            N = self.N_seg
        trajs = list()
        nodes = [x0[None, :]]
        for i in range(n_layers):
            xf = self.gen_terminals(nodes[i], tf)
            x0i = torch.tile(nodes[i], [xf.shape[1], 1])
            xf = xf.reshape(-1, xf.shape[-1])

            traj = self.calc_trajectories(x0i, tf, xf, N)
            if dyn_filter:
                feas_flag = self.feasible_flag(traj, xf)
                traj = traj[feas_flag]
                xf = xf[feas_flag]

            trajs.append(traj)

            nodes.append(xf.reshape(-1, xf.shape[-1]))
        return trajs, nodes[1:]


if __name__ == "__main__":
    planner = SplinePlanner("cuda")
    x0 = torch.tensor([1., 2., 1., 0.]).cuda()
    tf = 5
    traj, xf = planner.gen_trajectories(x0, tf)
    trajs = planner.gen_trajectory_batch(xf, tf)

    # x, y, v, a, yaw,r, t = traj
    msize = 12
    trajs, nodes = planner.gen_trajectory_tree(x0, tf, 2)
    x0 = x0.cpu().numpy()
    traj = traj.cpu().numpy()
    plt.figure(figsize=(20, 10))
    plt.plot(x0[0], x0[1], marker="o", color="b", markersize=msize)
    for node, traj in zip(nodes, trajs):
        node = node.cpu().numpy()
        traj = traj.cpu().numpy()
        x = traj[..., 0]
        y = traj[..., 1]
        plt.plot(x.T, y.T, color="k")
        for p in node:
            plt.plot(p[0], p[1], marker="o", color="b", markersize=msize)
    plt.show()