Spaces:
Paused
Paused
File size: 16,804 Bytes
7f3c2df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
import collections
import numpy as np
import torch
from enum import IntEnum
from scipy.interpolate import interp1d
def interp_lanes(lane):
""" generate interpolants for lanes
Args:
lane (np.array()): [Nx3]
Returns:
"""
ds = np.cumsum(
np.hstack([0., np.linalg.norm(lane[1:, :2]-lane[:-1, :2], axis=-1)]))
return interp1d(ds, lane, fill_value="extrapolate", assume_sorted=True, axis=0), lane[0]
def batch_proj(x, line):
# x:[batch,3], line:[batch,N,3]
line_length = line.shape[-2]
batch_dim = x.ndim - 1
if isinstance(x, torch.Tensor):
delta = line[..., 0:2] - torch.unsqueeze(x[..., 0:2], dim=-2).repeat(
*([1] * batch_dim), line_length, 1
)
dis = torch.linalg.norm(delta, axis=-1)
idx0 = torch.argmin(dis, dim=-1)
idx = idx0.view(*line.shape[:-2], 1, 1).repeat(
*([1] * (batch_dim + 1)), line.shape[-1]
)
line_min = torch.squeeze(torch.gather(line, -2, idx), dim=-2)
dx = x[..., None, 0] - line[..., 0]
dy = x[..., None, 1] - line[..., 1]
delta_y = -dx * torch.sin(line_min[..., None, 2]) + dy * torch.cos(
line_min[..., None, 2]
)
delta_x = dx * torch.cos(line_min[..., None, 2]) + dy * torch.sin(
line_min[..., None, 2]
)
ref_pts = torch.stack(
[
line_min[..., 0] + delta_x * torch.cos(line_min[..., 2]),
line_min[..., 1] + delta_x * torch.sin(line_min[..., 2]),
line_min[..., 2],
],
dim=-1,
)
delta_psi = round_2pi(x[..., 2] - line_min[..., 2])
return (
delta_x,
delta_y,
torch.unsqueeze(delta_psi, dim=-1),
ref_pts,
)
elif isinstance(x, np.ndarray):
delta = line[..., 0:2] - np.repeat(
x[..., np.newaxis, 0:2], line_length, axis=-2
)
dis = np.linalg.norm(delta, axis=-1)
idx0 = np.argmin(dis, axis=-1)
idx = idx0.reshape(*line.shape[:-2], 1,
1).repeat(line.shape[-1], axis=-1)
line_min = np.squeeze(np.take_along_axis(line, idx, axis=-2), axis=-2)
dx = x[..., None, 0] - line[..., 0]
dy = x[..., None, 1] - line[..., 1]
delta_y = -dx * np.sin(line_min[..., None, 2]) + dy * np.cos(
line_min[..., None, 2]
)
delta_x = dx * np.cos(line_min[..., None, 2]) + dy * np.sin(
line_min[..., None, 2]
)
line_min[..., 0] += delta_x * np.cos(line_min[..., 2])
line_min[..., 1] += delta_x * np.sin(line_min[..., 2])
delta_psi = round_2pi(x[..., 2] - line_min[..., 2])
return (
delta_x,
delta_y,
np.expand_dims(delta_psi, axis=-1),
line_min,
)
def round_2pi(x):
return (x + np.pi) % (2 * np.pi) - np.pi
def get_box_world_coords(pos, yaw, extent):
corners = (torch.tensor([[-1, -1], [-1, 1], [1, 1], [1, -1]]) * 0.5).to(pos.device) * (
extent.unsqueeze(-2)
)
s = torch.sin(yaw).unsqueeze(-1)
c = torch.cos(yaw).unsqueeze(-1)
rotM = torch.cat((torch.cat((c, s), dim=-1),
torch.cat((-s, c), dim=-1)), dim=-2)
rotated_corners = (corners + pos.unsqueeze(-2)) @ rotM
return rotated_corners
def get_upright_box(pos, extent):
yaws = torch.zeros(*pos.shape[:-1], 1).to(pos.device)
boxes = get_box_world_coords(pos, yaws, extent)
upright_boxes = boxes[..., [0, 2], :]
return upright_boxes
def batch_nd_transform_points(points, Mat):
ndim = Mat.shape[-1] - 1
Mat = torch.transpose(Mat, -1, -2)
return (points.unsqueeze(-2) @ Mat[..., :ndim, :ndim]).squeeze(-2) + Mat[
..., -1:, :ndim
].squeeze(-2)
def transform_points_tensor(
points: torch.Tensor, transf_matrix: torch.Tensor
) -> torch.Tensor:
"""
Transform a set of 2D/3D points using the given transformation matrix.
Assumes row major ordering of the input points. The transform function has 3 modes:
- points (N, F), transf_matrix (F+1, F+1)
all points are transformed using the matrix and the output points have shape (N, F).
- points (B, N, F), transf_matrix (F+1, F+1)
all sequences of points are transformed using the same matrix and the output points have shape (B, N, F).
transf_matrix is broadcasted.
- points (B, N, F), transf_matrix (B, F+1, F+1)
each sequence of points is transformed using its own matrix and the output points have shape (B, N, F).
Note this function assumes points.shape[-1] == matrix.shape[-1] - 1, which means that last
rows in the matrices do not influence the final results.
For 2D points only the first 2x3 parts of the matrices will be used.
:param points: Input points of shape (N, F) or (B, N, F)
with F = 2 or 3 depending on input points are 2D or 3D points.
:param transf_matrix: Transformation matrix of shape (F+1, F+1) or (B, F+1, F+1) with F = 2 or 3.
:return: Transformed points of shape (N, F) or (B, N, F) depending on the dimensions of the input points.
"""
points_log = f" received points with shape {points.shape} "
matrix_log = f" received matrices with shape {transf_matrix.shape} "
assert points.ndim in [
2, 3], f"points should have ndim in [2,3],{points_log}"
assert transf_matrix.ndim in [
2,
3,
], f"matrix should have ndim in [2,3],{matrix_log}"
assert (
points.ndim >= transf_matrix.ndim
), f"points ndim should be >= than matrix,{points_log},{matrix_log}"
points_feat = points.shape[-1]
assert points_feat in [
2, 3], f"last points dimension must be 2 or 3,{points_log}"
assert (
transf_matrix.shape[-1] == transf_matrix.shape[-2]
), f"matrix should be a square matrix,{matrix_log}"
matrix_feat = transf_matrix.shape[-1]
assert matrix_feat in [
3, 4], f"last matrix dimension must be 3 or 4,{matrix_log}"
assert (
points_feat == matrix_feat - 1
), f"points last dim should be one less than matrix,{points_log},{matrix_log}"
def _transform(points: torch.Tensor, transf_matrix: torch.Tensor) -> torch.Tensor:
num_dims = transf_matrix.shape[-1] - 1
transf_matrix = torch.permute(transf_matrix, (0, 2, 1))
return (
points @ transf_matrix[:, :num_dims, :num_dims]
+ transf_matrix[:, -1:, :num_dims]
)
if points.ndim == transf_matrix.ndim == 2:
points = torch.unsqueeze(points, 0)
transf_matrix = torch.unsqueeze(transf_matrix, 0)
return _transform(points, transf_matrix)[0]
elif points.ndim == transf_matrix.ndim == 3:
return _transform(points, transf_matrix)
elif points.ndim == 3 and transf_matrix.ndim == 2:
transf_matrix = torch.unsqueeze(transf_matrix, 0)
return _transform(points, transf_matrix)
else:
raise NotImplementedError(
f"unsupported case!{points_log},{matrix_log}")
def PED_PED_collision(p1, p2, S1, S2):
if isinstance(p1, torch.Tensor):
return (
torch.linalg.norm(p1[..., 0:2] - p2[..., 0:2], dim=-1)
- (S1[..., 0] + S2[..., 0]) / 2
)
elif isinstance(p1, np.ndarray):
return (
np.linalg.norm(p1[..., 0:2] - p2[..., 0:2], axis=-1)
- (S1[..., 0] + S2[..., 0]) / 2
)
else:
raise NotImplementedError
def batch_rotate_2D(xy, theta):
if isinstance(xy, torch.Tensor):
x1 = xy[..., 0] * torch.cos(theta) - xy[..., 1] * torch.sin(theta)
y1 = xy[..., 1] * torch.cos(theta) + xy[..., 0] * torch.sin(theta)
return torch.stack([x1, y1], dim=-1)
elif isinstance(xy, np.ndarray):
x1 = xy[..., 0] * np.cos(theta) - xy[..., 1] * np.sin(theta)
y1 = xy[..., 1] * np.cos(theta) + xy[..., 0] * np.sin(theta)
return np.concatenate((x1[..., None], y1[..., None]), axis=-1)
def VEH_VEH_collision(
p1, p2, S1, S2, alpha=5, return_dis=False, offsetX=1.0, offsetY=0.3
):
if isinstance(p1, torch.Tensor):
cornersX = torch.kron(
S1[..., 0] +
offsetX, torch.tensor([0.5, 0.5, -0.5, -0.5]).to(p1.device)
)
cornersY = torch.kron(
S1[..., 1] +
offsetY, torch.tensor([0.5, -0.5, 0.5, -0.5]).to(p1.device)
)
corners = torch.stack([cornersX, cornersY], dim=-1)
theta1 = p1[..., 2]
theta2 = p2[..., 2]
dx = (p1[..., 0:2] - p2[..., 0:2]).repeat_interleave(4, dim=-2)
delta_x1 = batch_rotate_2D(
corners, theta1.repeat_interleave(4, dim=-1)) + dx
delta_x2 = batch_rotate_2D(
delta_x1, -theta2.repeat_interleave(4, dim=-1))
dis = torch.maximum(
torch.abs(delta_x2[..., 0]) - 0.5 *
S2[..., 0].repeat_interleave(4, dim=-1),
torch.abs(delta_x2[..., 1]) - 0.5 *
S2[..., 1].repeat_interleave(4, dim=-1),
).view(*S1.shape[:-1], 4)
min_dis, _ = torch.min(dis, dim=-1)
return min_dis
elif isinstance(p1, np.ndarray):
cornersX = np.kron(S1[..., 0] + offsetX,
np.array([0.5, 0.5, -0.5, -0.5]))
cornersY = np.kron(S1[..., 1] + offsetY,
np.array([0.5, -0.5, 0.5, -0.5]))
corners = np.concatenate((cornersX, cornersY), axis=-1)
theta1 = p1[..., 2]
theta2 = p2[..., 2]
dx = (p1[..., 0:2] - p2[..., 0:2]).repeat(4, axis=-2)
delta_x1 = batch_rotate_2D(corners, theta1.repeat(4, axis=-1)) + dx
delta_x2 = batch_rotate_2D(delta_x1, -theta2.repeat(4, axis=-1))
dis = np.maximum(
np.abs(delta_x2[..., 0]) - 0.5 * S2[..., 0].repeat(4, axis=-1),
np.abs(delta_x2[..., 1]) - 0.5 * S2[..., 1].repeat(4, axis=-1),
).reshape(*S1.shape[:-1], 4)
min_dis = np.min(dis, axis=-1)
return min_dis
else:
raise NotImplementedError
def VEH_PED_collision(p1, p2, S1, S2):
if isinstance(p1, torch.Tensor):
mask = torch.logical_or(
torch.abs(p1[..., 2]) > 0.1, torch.linalg.norm(
p2[..., 2:4], dim=-1) > 0.1
).detach()
theta = p1[..., 2]
dx = batch_rotate_2D(p2[..., 0:2] - p1[..., 0:2], -theta)
return torch.maximum(
torch.abs(dx[..., 0]) - S1[..., 0] / 2 - S2[..., 0] / 2,
torch.abs(dx[..., 1]) - S1[..., 1] / 2 - S2[..., 0] / 2,
)
elif isinstance(p1, np.ndarray):
theta = p1[..., 2]
dx = batch_rotate_2D(p2[..., 0:2] - p1[..., 0:2], -theta)
return np.maximum(
np.abs(dx[..., 0]) - S1[..., 0] / 2 - S2[..., 0] / 2,
np.abs(dx[..., 1]) - S1[..., 1] / 2 - S2[..., 0] / 2,
)
else:
raise NotImplementedError
def PED_VEH_collision(p1, p2, S1, S2):
return VEH_PED_collision(p2, p1, S2, S1)
def batch_proj(x, line):
# x:[batch,3], line:[batch,N,3]
line_length = line.shape[-2]
batch_dim = x.ndim - 1
if isinstance(x, torch.Tensor):
delta = line[..., 0:2] - torch.unsqueeze(x[..., 0:2], dim=-2).repeat(
*([1] * batch_dim), line_length, 1
)
dis = torch.linalg.norm(delta, axis=-1)
idx0 = torch.argmin(dis, dim=-1)
idx = idx0.view(*line.shape[:-2], 1, 1).repeat(
*([1] * (batch_dim + 1)), line.shape[-1]
)
line_min = torch.squeeze(torch.gather(line, -2, idx), dim=-2)
dx = x[..., None, 0] - line[..., 0]
dy = x[..., None, 1] - line[..., 1]
delta_y = -dx * torch.sin(line_min[..., None, 2]) + dy * torch.cos(
line_min[..., None, 2]
)
delta_x = dx * torch.cos(line_min[..., None, 2]) + dy * torch.sin(
line_min[..., None, 2]
)
# ref_pts = torch.stack(
# [
# line_min[..., 0] + delta_x * torch.cos(line_min[..., 2]),
# line_min[..., 1] + delta_x * torch.sin(line_min[..., 2]),
# line_min[..., 2],
# ],
# dim=-1,
# )
delta_psi = round_2pi(x[..., 2] - line_min[..., 2])
return (
delta_x,
delta_y,
torch.unsqueeze(delta_psi, dim=-1),
)
elif isinstance(x, np.ndarray):
delta = line[..., 0:2] - np.repeat(
x[..., np.newaxis, 0:2], line_length, axis=-2
)
dis = np.linalg.norm(delta, axis=-1)
idx0 = np.argmin(dis, axis=-1)
idx = idx0.reshape(*line.shape[:-2], 1,
1).repeat(line.shape[-1], axis=-1)
line_min = np.squeeze(np.take_along_axis(line, idx, axis=-2), axis=-2)
dx = x[..., None, 0] - line[..., 0]
dy = x[..., None, 1] - line[..., 1]
delta_y = -dx * np.sin(line_min[..., None, 2]) + dy * np.cos(
line_min[..., None, 2]
)
delta_x = dx * np.cos(line_min[..., None, 2]) + dy * np.sin(
line_min[..., None, 2]
)
# line_min[..., 0] += delta_x * np.cos(line_min[..., 2])
# line_min[..., 1] += delta_x * np.sin(line_min[..., 2])
delta_psi = round_2pi(x[..., 2] - line_min[..., 2])
return (
delta_x,
delta_y,
np.expand_dims(delta_psi, axis=-1),
)
class CollisionType(IntEnum):
"""This enum defines the three types of collisions: front, rear and side."""
FRONT = 0
REAR = 1
SIDE = 2
def detect_collision(
ego_pos: np.ndarray,
ego_yaw: np.ndarray,
ego_extent: np.ndarray,
other_pos: np.ndarray,
other_yaw: np.ndarray,
other_extent: np.ndarray,
):
"""
Computes whether a collision occured between ego and any another agent.
Also computes the type of collision: rear, front, or side.
For this, we compute the intersection of ego's four sides with a target
agent and measure the length of this intersection. A collision
is classified into a class, if the corresponding length is maximal,
i.e. a front collision exhibits the longest intersection with
egos front edge.
.. note:: please note that this funciton will stop upon finding the first
colision, so it won't return all collisions but only the first
one found.
:param ego_pos: predicted centroid
:param ego_yaw: predicted yaw
:param ego_extent: predicted extent
:param other_pos: target agents
:return: None if not collision was found, and a tuple with the
collision type and the agent track_id
"""
from l5kit.planning import utils
ego_bbox = utils._get_bounding_box(
centroid=ego_pos, yaw=ego_yaw, extent=ego_extent)
# within_range_mask = utils.within_range(ego_pos, ego_extent, other_pos, other_extent)
for i in range(other_pos.shape[0]):
agent_bbox = utils._get_bounding_box(
other_pos[i], other_yaw[i], other_extent[i])
if ego_bbox.intersects(agent_bbox):
front_side, rear_side, left_side, right_side = utils._get_sides(
ego_bbox)
intersection_length_per_side = np.asarray(
[
agent_bbox.intersection(front_side).length,
agent_bbox.intersection(rear_side).length,
agent_bbox.intersection(left_side).length,
agent_bbox.intersection(right_side).length,
]
)
argmax_side = np.argmax(intersection_length_per_side)
# Remap here is needed because there are two sides that are
# mapped to the same collision type CollisionType.SIDE
max_collision_types = max(CollisionType).value
remap_argmax = min(argmax_side, max_collision_types)
collision_type = CollisionType(remap_argmax)
return collision_type, i
return None
def calc_distance_map(road_flag, max_dis=10):
"""mark the image with manhattan distance to the drivable area
Args:
road_flag (torch.Tensor[B,W,H]): an image with 1 channel, 1 for drivable area, 0 for non-drivable area
max_dis (int, optional): maximum distance that the result saturates to. Defaults to 10.
"""
out = torch.zeros_like(road_flag, dtype=torch.float)
out[road_flag == 0] = max_dis
out[road_flag == 1] = 0
for i in range(max_dis-1):
out[..., 1:, :] = torch.min(out[..., 1:, :], out[..., :-1, :]+1)
out[..., :-1, :] = torch.min(out[..., :-1, :], out[..., 1:, :]+1)
out[..., :, 1:] = torch.min(out[..., :, 1:], out[..., :, :-1]+1)
out[..., :, :-1] = torch.min(out[..., :, :-1], out[..., :, 1:]+1)
return out
|