File size: 9,543 Bytes
7f3c2df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import numpy as np
import torch
from torch import optim
from torch import nn
from tqdm import tqdm
from matplotlib import pyplot as plt
import torch.nn.functional as F
from collections import defaultdict
import os
import roma


class unicycle(torch.nn.Module):

    def __init__(self, train_timestamp, centers, eulers, heights=None):
        super(unicycle, self).__init__()
        self.train_timestamp = train_timestamp
        self.delta = torch.diff(self.train_timestamp)

        self.input_a = centers[:, 0].clone()
        self.input_b = centers[:, 1].clone()

        self.a = nn.Parameter(centers[:, 0])
        self.b = nn.Parameter(centers[:, 1])
        
        diff_a = torch.diff(centers[:, 0]) / self.delta
        diff_b = torch.diff(centers[:, 1]) / self.delta
        v = torch.sqrt(diff_a ** 2 + diff_b**2)
        
        self.v = nn.Parameter(F.pad(v, (0, 1), 'constant', v[-1].item()))
        self.pitchroll = eulers[:, :2]
        self.yaw = nn.Parameter(eulers[:, -1])

        if heights is None:
            self.h = torch.zeros_like(train_timestamp).float()
        else:
            self.h = heights

    def acc_omega(self):
        acc = torch.diff(self.v) / self.delta
        omega = torch.diff(self.yaw) / self.delta
        acc = F.pad(acc, (0, 1), 'constant', acc[-1].item())
        omega = F.pad(omega, (0, 1), 'constant', omega[-1].item())
        return acc, omega

    def forward(self, timestamp):
        if timestamp < self.train_timestamp[0]:
            delta_t = self.train_timestamp[0] - timestamp
            a = self.a[0] - delta_t * torch.cos(self.yaw[0]) * self.v[0]
            b = self.b[0] - delta_t * torch.sin(self.yaw[0]) * self.v[0]
            return a, b, self.v[0], self.pitchroll[0], self.yaw[0], self.h[0]
        elif timestamp > self.train_timestamp[-1]:
            delta_t = timestamp - self.train_timestamp[-1]
            a = self.a[-1] + delta_t * torch.cos(self.yaw[-1]) * self.v[-1]
            b = self.b[-1] + delta_t * torch.sin(self.yaw[-1]) * self.v[-1]
            return a, b, self.v[-1], self.pitchroll[-1], self.yaw[-1], self.h[-1]
        idx = torch.searchsorted(self.train_timestamp, timestamp, side='left')
        if self.train_timestamp[idx] == timestamp:
            return self.a[idx], self.b[idx], self.v[idx], self.pitchroll[idx], self.yaw[idx], self.h[idx]
        else:
            prev_timestamps = self.train_timestamp[idx-1]
            delta_t = timestamp - prev_timestamps
            prev_a, prev_b = self.a[idx-1], self.b[idx-1]
            prev_v, prev_yaw = self.v[idx-1], self.yaw[idx-1]
            acc, omega = self.acc_omega()
            v = prev_v + acc[idx-1] * delta_t
            yaw = prev_yaw + omega[idx-1] * delta_t
            a = prev_a + prev_v * ((torch.sin(yaw) - torch.sin(prev_yaw)) / (omega[idx-1] + 1e-6))
            b = prev_b - prev_v * ((torch.cos(yaw) - torch.cos(prev_yaw)) / (omega[idx-1] + 1e-6))
            h = self.h[idx-1]
        return a, b, v, self.pitchroll[idx-1], yaw, h

    def capture(self):
        return (
            self.a,
            self.b,
            self.v,
            self.pitchroll,
            self.yaw,
            self.h,
            self.train_timestamp,
            self.delta
        )
    
    @classmethod
    def restore(cls, model_args):
        (
            a,
            b,
            v,
            pitchroll,
            yaw,
            h,
            train_timestamp,
            delta
        ) = model_args
        model = cls(train_timestamp, 
                    torch.stack([a.clone().detach(),b.clone().detach()], dim=-1), 
                    torch.concat([pitchroll.clone().detach(), yaw.clone().detach()[:, None]], dim=-1), 
                    h.clone().detach())
        model.a = a
        model.b = b
        model.v = v
        model.pitchroll = pitchroll
        model.yaw = yaw
        model.h = h
        model.train_timestamp = train_timestamp
        model.delta = delta
        return model

    def visualize(self, save_path, noise_centers=None, gt_centers=None):
        a = self.a.detach().cpu().numpy()
        b = self.b.detach().cpu().numpy()
        yaw = self.yaw.detach().cpu().numpy()
        plt.scatter(a, b, marker='x', color='b')
        plt.quiver(a, b, np.ones_like(a) * np.cos(yaw), np.ones_like(b) * np.sin(yaw), scale=20, width=0.005)
        if noise_centers is not None:
            noise_centers = noise_centers.detach().cpu().numpy()
            plt.scatter(noise_centers[:, 0], noise_centers[:, 1], marker='o', color='gray')
        if gt_centers is not None:
            gt_centers = gt_centers.detach().cpu().numpy()
            plt.scatter(gt_centers[:, 0], gt_centers[:, 1], marker='v', color='g')
        plt.axis('equal')
        plt.savefig(save_path)
        plt.close()

    def reg_loss(self):
        reg = 0
        acc, omega = self.acc_omega()
        reg += torch.mean(torch.abs(torch.diff(acc))) * 0.01
        reg += torch.mean(torch.abs(torch.diff(omega))) * 0.1
        reg_a_motion = self.v[:-1] * ((torch.sin(self.yaw[1:]) - torch.sin(self.yaw[:-1])) / (omega[:-1] + 1e-6)) 
        reg_b_motion = -self.v[:-1] * ((torch.cos(self.yaw[1:]) - torch.cos(self.yaw[:-1])) / (omega[:-1] + 1e-6))
        reg_a = self.a[:-1] + reg_a_motion
        reg_b = self.b[:-1] + reg_b_motion
        reg += torch.mean((reg_a - self.a[1:])**2 + (reg_b - self.b[1:])**2) * 1
        return reg
    
    def pos_loss(self):
        return torch.mean((self.a - self.input_a) ** 2 + (self.b - self.input_b) ** 2) * 10


def create_unicycle_model(train_cams, model_path, opt_iter=0, opt_pos=False, data_type='kitti'):
    unicycle_models = {}
    if data_type == 'kitti':
        cameras = [cam for cam in train_cams if 'cam_0' in cam.image_name]
    elif data_type == 'waymo':
        cameras = [cam for cam in train_cams if 'cam_1' in cam.image_name]
    elif data_type == 'nuscenes':
        cameras = [cam for cam in train_cams if (('CAM_FRONT' in cam.image_name) and ('LEFT' not in cam.image_name) and ('RIGHT' not in cam.image_name))]
    elif data_type == 'pandaset':
        cameras = [cam for cam in train_cams if 'front_camera' in cam.image_name]
    else:
        raise NotImplementedError    
    
    cameras = sorted(cameras, key=lambda x: x.timestamp)

    os.makedirs(os.path.join(model_path, "unicycle"), exist_ok=True)

    start_time = cameras[0].timestamp
    all_centers, all_heights, all_eulers, all_timestamps = defaultdict(list), defaultdict(list), defaultdict(list), defaultdict(list)
    for cam in cameras:
        t = cam.timestamp - start_time
        for track_id, b2w in cam.dynamics.items():
            all_centers[track_id].append(b2w[[0, 2], 3])
            all_heights[track_id].append(b2w[1, 3])
            eulers = roma.rotmat_to_euler('xzy', b2w[:3, :3])
            all_eulers[track_id].append(-eulers + torch.pi / 2)
            # all_eulers[track_id].append(eulers)
            all_timestamps[track_id].append(t)

    for track_id in all_centers.keys():
        centers = torch.stack(all_centers[track_id], dim=0).cuda()
        timestamps = torch.tensor(all_timestamps[track_id]).cuda()
        heights = torch.tensor(all_heights[track_id]).cuda()
        eulers = torch.stack(all_eulers[track_id]).cuda()

        model = unicycle(timestamps, centers.clone(), eulers.clone(), heights.clone())
        model.visualize(os.path.join(model_path, "unicycle", f"{track_id}_init.png"))
        l = [
            {'params': [model.v], 'lr': 1e-3, "name": "v"},
            {'params': [model.yaw], 'lr': 1e-4, "name": "yaw"},
        ]

        if opt_pos:
            l.extend([
                {'params': [model.a], 'lr': 1e-3, "name": "a"},
                {'params': [model.b], 'lr': 1e-3, "name": "b"},
            ])

        optimizer = optim.Adam(l, lr=0.0)

        t_range = tqdm(range(opt_iter), desc=f"Fitting {track_id}")
        for iter in t_range:
            loss = 5e-3 * model.reg_loss() + 1e-3 * model.pos_loss()
            t_range.set_postfix({'loss': loss.item()})
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        unicycle_models[track_id] = {'model': model, 
                                    'optimizer': optimizer,
                                    'input_centers': centers}
    
        model.visualize(os.path.join(model_path, "unicycle", f"{track_id}_iter0.png"))
        torch.save(model.capture(), os.path.join(model_path, f"ckpts/unicycle_{track_id}.pth"))

    return unicycle_models


if __name__ == "__main__":
    from scene import Scene, GaussianModel  
    from omegaconf import OmegaConf
    from argparse import ArgumentParser

    parser = ArgumentParser(description="Training script parameters")
    parser.add_argument("--base_cfg", type=str, default="./configs/gs_base.yaml")
    parser.add_argument("--data_cfg", type=str, default="./configs/nusc.yaml")
    parser.add_argument("--source_path", type=str, default="")
    parser.add_argument("--model_path", type=str, default="")
    args = parser.parse_args()
    cfg = OmegaConf.merge(OmegaConf.load(args.base_cfg), OmegaConf.load(args.data_cfg))
    if len(args.source_path) > 0:
        cfg.source_path = args.source_path
    if len(args.model_path) > 0:
        cfg.model_path = args.model_path
    gaussians = GaussianModel(3, feat_mutable=True)
    print("loading scene...")
    scene = Scene(cfg, gaussians, data_type=cfg.data_type)
    create_unicycle_model(scene.getTrainCameras(), cfg.model_path, 500, False, cfg.data_type)