Spaces:
Paused
Paused
File size: 12,376 Bytes
7f3c2df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import torch
import torch.nn.functional as F
from torch.autograd import Variable
from math import exp
from torch import Tensor, nn
from typing import Dict, Literal, Optional, Tuple, cast
from jaxtyping import Bool, Float
L1Loss = nn.L1Loss
MSELoss = nn.MSELoss
def l1_loss(network_output, gt, mask=None):
l1 = torch.abs((network_output - gt))
if mask is not None:
l1 = l1[:, mask]
return l1.mean()
def l2_loss(network_output, gt):
return ((network_output - gt) ** 2).mean()
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)])
return gauss / gauss.sum()
def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
return window
def ssim(img1, img2, window_size=11, size_average=True):
channel = img1.size(-3)
window = create_window(window_size, channel)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
return _ssim(img1, img2, window, window_size, channel, size_average)
def _ssim(img1, img2, window, window_size, channel, size_average=True):
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2
C1 = 0.01 ** 2
C2 = 0.03 ** 2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
if size_average:
return ssim_map.mean()
else:
return ssim_map.mean(1).mean(1).mean(1)
def ssim_loss(img1, img2, window_size=11, size_average=True, mask=None):
channel = img1.size(-3)
window = create_window(window_size, channel)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
return _ssim_loss(img1, img2, window, window_size, channel, size_average, mask)
def _ssim_loss(img1, img2, window, window_size, channel, size_average=True, mask=None):
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2
C1 = 0.01 ** 2
C2 = 0.03 ** 2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
ssim_map = 1 - ssim_map
if mask is not None:
ssim_map = ssim_map[:, mask]
if size_average:
return ssim_map.mean()
else:
return ssim_map.mean(1).mean(1).mean(1)
def masked_reduction(
input_tensor: Float[Tensor, "1 32 mult"],
mask: Bool[Tensor, "1 32 mult"],
reduction_type: Literal["image", "batch"],
) -> Tensor:
"""
Whether to consolidate the input_tensor across the batch or across the image
Args:
input_tensor: input tensor
mask: mask tensor
reduction_type: either "batch" or "image"
Returns:
input_tensor: reduced input_tensor
"""
if reduction_type == "batch":
# avoid division by 0 (if sum(M) = sum(sum(mask)) = 0: sum(image_loss) = 0)
divisor = torch.sum(mask)
if divisor == 0:
return torch.tensor(0, device=input_tensor.device)
input_tensor = torch.sum(input_tensor) / divisor
elif reduction_type == "image":
# avoid division by 0 (if M = sum(mask) = 0: image_loss = 0)
valid = mask.nonzero()
input_tensor[valid] = input_tensor[valid] / mask[valid]
input_tensor = torch.mean(input_tensor)
return input_tensor
def normalized_depth_scale_and_shift(
prediction: Float[Tensor, "1 32 mult"], target: Float[Tensor, "1 32 mult"], mask: Bool[Tensor, "1 32 mult"]
):
"""
More info here: https://arxiv.org/pdf/2206.00665.pdf supplementary section A2 Depth Consistency Loss
This function computes scale/shift required to normalizes predicted depth map,
to allow for using normalized depth maps as input from monocular depth estimation networks.
These networks are trained such that they predict normalized depth maps.
Solves for scale/shift using a least squares approach with a closed form solution:
Based on:
https://github.com/autonomousvision/monosdf/blob/d9619e948bf3d85c6adec1a643f679e2e8e84d4b/code/model/loss.py#L7
Args:
prediction: predicted depth map
target: ground truth depth map
mask: mask of valid pixels
Returns:
scale and shift for depth prediction
"""
# system matrix: A = [[a_00, a_01], [a_10, a_11]]
a_00 = torch.sum(mask * prediction * prediction, (1, 2))
a_01 = torch.sum(mask * prediction, (1, 2))
a_11 = torch.sum(mask, (1, 2))
# right hand side: b = [b_0, b_1]
b_0 = torch.sum(mask * prediction * target, (1, 2))
b_1 = torch.sum(mask * target, (1, 2))
# solution: x = A^-1 . b = [[a_11, -a_01], [-a_10, a_00]] / (a_00 * a_11 - a_01 * a_10) . b
scale = torch.zeros_like(b_0)
shift = torch.zeros_like(b_1)
det = a_00 * a_11 - a_01 * a_01
valid = det.nonzero()
scale[valid] = (a_11[valid] * b_0[valid] - a_01[valid] * b_1[valid]) / det[valid]
shift[valid] = (-a_01[valid] * b_0[valid] + a_00[valid] * b_1[valid]) / det[valid]
return scale, shift
class MiDaSMSELoss(nn.Module):
"""
data term from MiDaS paper
"""
def __init__(self, reduction_type: Literal["image", "batch"] = "batch"):
super().__init__()
self.reduction_type: Literal["image", "batch"] = reduction_type
# reduction here is different from the image/batch-based reduction. This is either "mean" or "sum"
self.mse_loss = MSELoss(reduction="none")
def forward(
self,
prediction: Float[Tensor, "1 32 mult"],
target: Float[Tensor, "1 32 mult"],
mask: Bool[Tensor, "1 32 mult"],
) -> Float[Tensor, "0"]:
"""
Args:
prediction: predicted depth map
target: ground truth depth map
mask: mask of valid pixels
Returns:
mse loss based on reduction function
"""
summed_mask = torch.sum(mask, (1, 2))
image_loss = torch.sum(self.mse_loss(prediction, target) * mask, (1, 2))
# multiply by 2 magic number?
image_loss = masked_reduction(image_loss, 2 * summed_mask, self.reduction_type)
return image_loss
class GradientLoss(nn.Module):
"""
multiscale, scale-invariant gradient matching term to the disparity space.
This term biases discontinuities to be sharp and to coincide with discontinuities in the ground truth
More info here https://arxiv.org/pdf/1907.01341.pdf Equation 11
"""
def __init__(self, scales: int = 4, reduction_type: Literal["image", "batch"] = "batch"):
"""
Args:
scales: number of scales to use
reduction_type: either "batch" or "image"
"""
super().__init__()
self.reduction_type: Literal["image", "batch"] = reduction_type
self.__scales = scales
def forward(
self,
prediction: Float[Tensor, "1 32 mult"],
target: Float[Tensor, "1 32 mult"],
mask: Bool[Tensor, "1 32 mult"],
) -> Float[Tensor, "0"]:
"""
Args:
prediction: predicted depth map
target: ground truth depth map
mask: mask of valid pixels
Returns:
gradient loss based on reduction function
"""
assert self.__scales >= 1
total = 0.0
for scale in range(self.__scales):
step = pow(2, scale)
grad_loss = self.gradient_loss(
prediction[:, ::step, ::step],
target[:, ::step, ::step],
mask[:, ::step, ::step],
)
total += grad_loss
assert isinstance(total, Tensor)
return total
def gradient_loss(
self,
prediction: Float[Tensor, "1 32 mult"],
target: Float[Tensor, "1 32 mult"],
mask: Bool[Tensor, "1 32 mult"],
) -> Float[Tensor, "0"]:
"""
multiscale, scale-invariant gradient matching term to the disparity space.
This term biases discontinuities to be sharp and to coincide with discontinuities in the ground truth
More info here https://arxiv.org/pdf/1907.01341.pdf Equation 11
Args:
prediction: predicted depth map
target: ground truth depth map
reduction: reduction function, either reduction_batch_based or reduction_image_based
Returns:
gradient loss based on reduction function
"""
summed_mask = torch.sum(mask, (1, 2))
diff = prediction - target
diff = torch.mul(mask, diff)
grad_x = torch.abs(diff[:, :, 1:] - diff[:, :, :-1])
mask_x = torch.mul(mask[:, :, 1:], mask[:, :, :-1])
grad_x = torch.mul(mask_x, grad_x)
grad_y = torch.abs(diff[:, 1:, :] - diff[:, :-1, :])
mask_y = torch.mul(mask[:, 1:, :], mask[:, :-1, :])
grad_y = torch.mul(mask_y, grad_y)
image_loss = torch.sum(grad_x, (1, 2)) + torch.sum(grad_y, (1, 2))
image_loss = masked_reduction(image_loss, summed_mask, self.reduction_type)
return image_loss
class ScaleAndShiftInvariantLoss(nn.Module):
"""
Scale and shift invariant loss as described in
"Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer"
https://arxiv.org/pdf/1907.01341.pdf
"""
def __init__(self, alpha: float = 0.5, scales: int = 4, reduction_type: Literal["image", "batch"] = "batch"):
"""
Args:
alpha: weight of the regularization term
scales: number of scales to use
reduction_type: either "batch" or "image"
"""
super().__init__()
self.__data_loss = MiDaSMSELoss(reduction_type=reduction_type)
self.__regularization_loss = GradientLoss(scales=scales, reduction_type=reduction_type)
self.__alpha = alpha
self.__prediction_ssi = None
def forward(
self,
prediction: Float[Tensor, "1 32 mult"],
target: Float[Tensor, "1 32 mult"],
mask: Bool[Tensor, "1 32 mult"],
) -> Float[Tensor, "0"]:
"""
Args:
prediction: predicted depth map (unnormalized)
target: ground truth depth map (normalized)
mask: mask of valid pixels
Returns:
scale and shift invariant loss
"""
scale, shift = normalized_depth_scale_and_shift(prediction, target, mask)
self.__prediction_ssi = scale.view(-1, 1, 1) * prediction + shift.view(-1, 1, 1)
total = self.__data_loss(self.__prediction_ssi, target, mask)
# if self.__alpha > 0:
# total += self.__alpha * self.__regularization_loss(self.__prediction_ssi, target, mask)
return total
def __get_prediction_ssi(self):
"""
scale and shift invariant prediction
from https://arxiv.org/pdf/1907.01341.pdf equation 1
"""
return self.__prediction_ssi
prediction_ssi = property(__get_prediction_ssi) |