Spaces:
Paused
Paused
File size: 22,944 Bytes
c9fc56f 79ef841 d767e53 7747993 c9fc56f 7747993 b98faf8 c9fc56f 61703cc 79ef841 c9fc56f b98faf8 79ef841 c9fc56f 79ef841 f4fae5e 7f3c2df c9fc56f 79ef841 c9fc56f bca98b2 c9fc56f bca98b2 c9fc56f 61703cc 79ef841 bca98b2 560ccce bca98b2 c9fc56f 560ccce bca98b2 c9fc56f bca98b2 c9fc56f bca98b2 c9fc56f bca98b2 c9fc56f 5316350 bca98b2 c9fc56f bca98b2 5316350 c9fc56f bca98b2 c9fc56f bca98b2 72af80c c9fc56f b98faf8 c9fc56f b98faf8 7747993 a125da9 b98faf8 c9fc56f b98faf8 7f3c2df b98faf8 7f3c2df b98faf8 61703cc b98faf8 c9fc56f bca98b2 b98faf8 bca98b2 c9fc56f 7747993 5db2ced c9fc56f d767e53 b98faf8 c9fc56f 7747993 c9fc56f 7747993 c9fc56f b98faf8 c9fc56f b98faf8 c9fc56f 7747993 c9fc56f b98faf8 c9fc56f 61703cc c9fc56f b98faf8 c9fc56f e050c1a c9fc56f e050c1a c9fc56f e050c1a c9fc56f d767e53 e050c1a c9fc56f b98faf8 c9fc56f 5316350 d767e53 5316350 c9fc56f bca98b2 d8be8d5 bca98b2 7747993 bca98b2 7747993 b98faf8 7f3c2df b98faf8 7747993 b98faf8 bca98b2 b98faf8 bca98b2 0676e8e d8be8d5 3ef0e67 bca98b2 3ef0e67 bca98b2 3ef0e67 bca98b2 d8be8d5 bca98b2 3ef0e67 f4fae5e 72af80c f4fae5e 7747993 7bdfd37 7747993 d8be8d5 7747993 f4fae5e c9fc56f bca98b2 c9fc56f bca98b2 c9fc56f bca98b2 79ef841 bca98b2 79ef841 bca98b2 0676e8e 7747993 d8be8d5 7747993 0676e8e d8be8d5 72af80c bca98b2 3ef0e67 bca98b2 b98faf8 bca98b2 3ef0e67 bca98b2 3ef0e67 bca98b2 b98faf8 bca98b2 c9fc56f bca98b2 b98faf8 bca98b2 d8be8d5 bca98b2 5316350 d39f16b b98faf8 d39f16b 09e9d8a d39f16b 1a57d99 b98faf8 bca98b2 c9fc56f bca98b2 b98faf8 bca98b2 8215576 bca98b2 8215576 bca98b2 8215576 79ef841 8215576 79ef841 8215576 79ef841 8215576 ef6c55d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 |
import sys
import os
import pickle
import json
import threading
import io
import enum
import hugsim_env
import subprocess as sp
import shutil
import time
from collections import deque, OrderedDict
from datetime import datetime, timezone
from typing import Any, Dict, Optional, List, Tuple
from dataclasses import dataclass
sys.path.append(os.getcwd())
from moviepy import ImageSequenceClip
from fastapi import FastAPI, Body, Header, Depends, HTTPException, Query
from fastapi.responses import HTMLResponse, Response
from omegaconf import OmegaConf, DictConfig
from huggingface_hub import HfApi
import open3d as o3d
import numpy as np
import gymnasium
import uvicorn
import psutil
import torch
from glob import glob
from sim.utils.sim_utils import traj2control, traj_transform_to_global
from sim.utils.score_calculator import hugsim_evaluate
ADMIN_TOKEN = os.getenv('ADMIN_TOKEN', None)
HF_TOKEN = os.getenv('HF_TOKEN', None)
COMPETITION_ID = os.getenv('COMPETITION_ID', None)
hf_api = HfApi(token=HF_TOKEN)
class SubmissionStatus(enum.Enum):
PENDING = 0
QUEUED = 1
PROCESSING = 2
SUCCESS = 3
FAILED = 4
def to_video(observations: List[Any], output_path: str):
frames = []
for obs in observations:
row1 = np.concatenate([obs['CAM_FRONT_LEFT'], obs['CAM_FRONT'], obs['CAM_FRONT_RIGHT']], axis=1)
row2 = np.concatenate([obs['CAM_BACK_RIGHT'], obs['CAM_BACK'], obs['CAM_BACK_LEFT']], axis=1)
frame = np.concatenate([row1, row2], axis=0)
frames.append(frame)
clip = ImageSequenceClip(frames, fps=4)
clip.write_videofile(output_path)
def get_gpu_memory():
output_to_list = lambda x: x.decode('ascii').split('\n')[:-1]
COMMAND = "nvidia-smi --query-gpu=memory.used --format=csv"
try:
memory_use_info = output_to_list(sp.check_output(COMMAND.split(),stderr=sp.STDOUT))[1:]
except sp.CalledProcessError as e:
raise RuntimeError("command '{}' return with error (code {}): {}".format(e.cmd, e.returncode, e.output))
memory_use_values = [int(x.split()[0]) for x in memory_use_info]
return memory_use_values
def get_system_status():
cpu_percent = psutil.cpu_percent(interval=1)
cpu_count = psutil.cpu_count(logical=True)
virtual_mem = psutil.virtual_memory()
total_mem = virtual_mem.total / (1024 ** 3)
used_mem = virtual_mem.used / (1024 ** 3)
mem_percent = virtual_mem.percent
system_info = {
"cpu_percent": cpu_percent,
"cpu_count": cpu_count,
"total_memory_gb": round(total_mem, 2),
"used_memory_gb": round(used_mem, 2),
"memory_percent": mem_percent,
"gpus": get_gpu_memory(),
}
return system_info
def get_token_info(token: str) -> Dict[str, Any]:
token_info_path = hf_api.hf_hub_download(
repo_id=COMPETITION_ID,
filename=f"token_data_info/{token}.json",
repo_type="dataset",
)
with open(token_info_path, 'r') as f:
token_info = json.load(f)
return token_info
def download_submission_info(team_id: str) -> Dict[str, Any]:
"""
Download the submission info from Hugging Face Hub.
Args:
team_id (str): The team ID.
Returns:
Dict[str, Any]: The submission info.
"""
submission_info_path = hf_api.hf_hub_download(
repo_id=COMPETITION_ID,
filename=f"submission_info/{team_id}.json",
repo_type="dataset",
)
with open(submission_info_path, 'r') as f:
submission_info = json.load(f)
return submission_info
def upload_submission_info(team_id: str, user_submission_info: Dict[str, Any]):
user_submission_info_json = json.dumps(user_submission_info, indent=4)
user_submission_info_json_bytes = user_submission_info_json.encode("utf-8")
user_submission_info_json_buffer = io.BytesIO(user_submission_info_json_bytes)
hf_api.upload_file(
path_or_fileobj=user_submission_info_json_buffer,
path_in_repo=f"submission_info/{team_id}.json",
repo_id=COMPETITION_ID,
repo_type="dataset",
)
def update_submission_data(team_id: str, submission_id: str, data: Dict[str, Any]):
user_submission_info = download_submission_info(team_id)
for submission in user_submission_info["submissions"]:
if submission["submission_id"] == submission_id:
submission.update(data)
break
upload_submission_info(team_id, user_submission_info)
def delete_client_space(client_space_id: str):
try:
hf_api.delete_repo(
repo_id=client_space_id,
repo_type="space"
)
except:
print(f"Failed to delete space {client_space_id}. It may not exist or already deleted.")
class FifoDict:
def __init__(self, max_size: int):
self.max_size = max_size
self._order_dict = OrderedDict()
self.locker = threading.Lock()
def push(self, key: str, value: Any):
with self.locker:
if key in self._order_dict:
self._order_dict.move_to_end(key)
return
if len(self._order_dict) >= self.max_size:
self._order_dict.popitem(last=False)
self._order_dict[key] = value
def get(self, key: str) -> Any:
return self._order_dict.get(key, None)
@dataclass
class SceneConfig:
name: str
cfg: DictConfig
@dataclass
class EnvExecuteResult:
cur_scene_done: bool
done: bool
class EnvHandler:
"""A class to handle the environment for HUGSim.
This can include multiple scene and configurations.
"""
def __init__(self, scene_list: List[SceneConfig], base_output: str):
self._created_time = datetime.now(timezone.utc)
self._last_active_time = datetime.now(timezone.utc)
self._lock = threading.Lock()
self.scene_list = scene_list
self.base_output = base_output
self.env = None
self.reset_env()
def _switch_scene(self, scene_index: int):
"""
Switch to a different scene based on the index.
Args:
scene_index (int): The index of the scene to switch to.
"""
if scene_index < 0 or scene_index >= len(self.scene_list):
raise ValueError("Invalid scene index.")
self.close()
self.cur_scene_index = scene_index
scene_config = self.scene_list[scene_index]
self._log(f"Switch to scene: {scene_config.name}_{scene_config.cfg.scenario.mode}")
print(f"Switch to scene: {scene_config.name}_{scene_config.cfg.scenario.mode}")
self.cur_output = os.path.join(self.base_output,
f"{scene_config.name}_{scene_config.cfg.scenario.mode}")
os.makedirs(self.cur_output, exist_ok=True)
self.env = gymnasium.make('hugsim_env/HUGSim-v0', cfg=scene_config.cfg, output=self.cur_output)
self._scene_cnt = 0
self._scene_done = False
self._save_data = {'type': 'closeloop', 'frames': []}
self._observations_save = []
self._obs, self._info = self.env.reset()
self._log(f"Switched to scene: {scene_config.name}")
def close(self):
"""
Close the environment and release resources.
"""
if self.env is not None:
del self.env
self.env = None
self._log("Environment closed.")
def reset_env(self):
"""
Reset the environment and initialize variables.
"""
self._last_active_time = datetime.now(timezone.utc)
self._log_list = deque(maxlen=100)
self._done = False
self._score_list = []
self._switch_scene(0)
self._log("Environment reset complete.")
def get_current_state(self):
"""
Get the current state of the environment.
"""
self._last_active_time = datetime.now(timezone.utc)
return {
"obs": self._obs,
"info": self._info,
}
@property
def created_time(self) -> datetime:
"""
Get the creation time of the environment handler.
Returns:
datetime: The creation time.
"""
return self._created_time
@property
def last_active_time(self) -> datetime:
"""
Get the last active time of the environment handler.
Returns:
datetime: The last active time.
"""
return self._last_active_time
@property
def has_done(self) -> bool:
"""
Check if the episode is done.
Returns:
bool: True if the episode is done, False otherwise.
"""
return self._done
@property
def has_scene_done(self) -> bool:
"""
Check if the current scene is done.
Returns:
bool: True if the current scene is done, False otherwise.
"""
return self._scene_done
@property
def log_list(self) -> deque:
"""
Get the log list.
Returns:
deque: The log list containing recent log messages.
"""
return self._log_list
def execute_action(self, plan_traj: np.ndarray) -> EnvExecuteResult:
"""
Execute the action based on the planned trajectory.
Args:
plan_traj (Any): The planned trajectory to follow.
Returns:
bool: True if the episode is done, False otherwise.
"""
self._last_active_time = datetime.now(timezone.utc)
acc, steer_rate = traj2control(plan_traj, self._info)
action = {'acc': acc, 'steer_rate': steer_rate}
self._log("Executing action:", action)
self._obs, _, terminated, truncated, self._info = self.env.step(action)
self._scene_cnt += 1
self._scene_done = terminated or truncated or self._scene_cnt > 400
imu_plan_traj = plan_traj[:, [1, 0]]
imu_plan_traj[:, 1] *= -1
global_traj = traj_transform_to_global(imu_plan_traj, self._info['ego_box'])
self._save_data['frames'].append({
'time_stamp': self._info['timestamp'],
'is_key_frame': True,
'ego_box': self._info['ego_box'],
'obj_boxes': self._info['obj_boxes'],
'obj_names': ['car' for _ in self._info['obj_boxes']],
'planned_traj': {
'traj': global_traj,
'timestep': 0.5
},
'collision': self._info['collision'],
'rc': self._info['rc']
})
self._observations_save.append(self._obs['rgb'])
if not self._scene_done:
return EnvExecuteResult(cur_scene_done=False, done=False)
with open(os.path.join(self.cur_output, 'data.pkl'), 'wb') as wf:
pickle.dump([self._save_data], wf)
ground_xyz = np.asarray(o3d.io.read_point_cloud(os.path.join(self.cur_output, 'ground.ply')).points)
scene_xyz = np.asarray(o3d.io.read_point_cloud(os.path.join(self.cur_output, 'scene.ply')).points)
results = hugsim_evaluate([self._save_data], ground_xyz, scene_xyz)
with open(os.path.join(self.cur_output, 'eval.json'), 'w') as f:
json.dump(results, f)
self._score_list.append(results.copy())
to_video(self._observations_save, os.path.join(self.cur_output, 'video.mp4'))
self._log(f"Scene {self.cur_scene_index} completed. Evaluation results saved.")
if self.cur_scene_index < len(self.scene_list) - 1:
self._switch_scene(self.cur_scene_index + 1)
return EnvExecuteResult(cur_scene_done=True, done=False)
self._done = True
return EnvExecuteResult(cur_scene_done=True, done=True)
def _log(self, *messages):
log_message = f"[{str(datetime.now())}]" + " ".join([str(msg) for msg in messages]) + "\n"
with self._lock:
self._log_list.append(log_message)
def calculate_score(self) -> Dict[str, Any]:
"""
Calculate the score based on the current environment state.
Returns:
Dict[str, Any]: The score dictionary.
"""
if not self._done:
raise ValueError("Environment is not done yet. Cannot calculate score.")
rc = np.mean([float(score['rc']) for score in self._score_list]).round(4)
hdscore = np.mean([float(score['hdscore']) for score in self._score_list]).round(4)
return {"rc": rc, "hdscore": hdscore}
class EnvHandlerManager:
def __init__(self):
self._env_handlers = {}
self._token_info_map = {}
self._lock = threading.Lock()
threading.Thread(target=self._clean_expired_env_handlers, daemon=True).start()
def _get_scene_list(self, base_output: str) -> List[SceneConfig]:
"""
Load the scene configurations from the YAML files.
Returns:
List[SceneConfig]: A list of scene configurations.
"""
scene_list = []
for data_type in ['kitti360', 'waymo', 'nuscenes', 'pandaset']:
base_path = os.path.join(os.path.dirname(__file__), "web_server_config", f'{data_type}_base.yaml')
camera_path = os.path.join(os.path.dirname(__file__), "web_server_config", f'{data_type}_camera.yaml')
kinematic_path = os.path.join(os.path.dirname(__file__), "web_server_config", 'kinematic.yaml')
base_config = OmegaConf.load(base_path)
camera_config = OmegaConf.load(camera_path)
kinematic_config = OmegaConf.load(kinematic_path)
scenarios_list = glob(f"/app/app_datas/ss/scenarios/{data_type}/*.yaml")
for scenario_path in scenarios_list:
scenario_config = OmegaConf.load(scenario_path)
cfg = OmegaConf.merge(
{"scenario": scenario_config},
{"base": base_config},
{"camera": camera_config},
{"kinematic": kinematic_config}
)
model_path = os.path.join(cfg.base.model_base, cfg.scenario.scene_name)
model_config = OmegaConf.load(os.path.join(model_path, 'cfg.yaml'))
model_config.update({"model_path": f"/app/app_datas/ss/scenes/{data_type}/{cfg.scenario.scene_name}"})
cfg.update(model_config)
cfg.base.output_dir = base_output
scene_list.append(SceneConfig(name=cfg.scenario.scene_name, cfg=cfg))
return scene_list
def _generate_env_handler(self, env_id: str):
base_output = "/app/app_datas/env_output"
scene_list = self._get_scene_list(base_output)
output = os.path.join(base_output, f"{env_id}_hugsim_env")
os.makedirs(output, exist_ok=True)
return EnvHandler(scene_list, base_output=output)
def exists_env_handler(self, env_id: str) -> bool:
"""
Check if the environment handler for the given environment ID exists.
Args:
env_id (str): The environment ID.
Returns:
bool: True if the environment handler exists, False otherwise.
"""
with self._lock:
return env_id in self._env_handlers
def get_env_handler(self, env_id: str, token_info: Dict[str, Any]) -> EnvHandler:
"""
Get the environment handler for the given environment ID.
Args:
env_id (str): The environment ID.
Returns:
EnvHandler: The environment handler instance.
"""
with self._lock:
if env_id not in self._env_handlers:
self._env_handlers[env_id] = self._generate_env_handler(env_id)
self._token_info_map[env_id] = token_info
return self._env_handlers[env_id]
def close_env_handler(self, env_id: str):
"""
Close the environment handler for the given environment ID.
Args:
env_id (str): The environment ID.
"""
with self._lock:
env = self._env_handlers.pop(env_id, None)
self._env_handlers[env_id] = None
if env is not None:
env.close()
torch.cuda.empty_cache()
def _clean_expired_env_handlers(self):
"""
Clean up expired environment handlers based on the last active time.
"""
while 1:
try:
current_time = datetime.now(timezone.utc)
with self._lock:
expired_env_ids = [
env_id
for env_id, handler in self._env_handlers.items()
if handler and ((current_time - handler.created_time).total_seconds() > 3600 * 3.0 or (current_time - handler.last_active_time).total_seconds() > 600)
]
for env_id in expired_env_ids:
self.close_env_handler(env_id)
token_info = self._token_info_map.pop(env_id, None)
if token_info:
update_submission_data(token_info["team_id"], token_info["submission_id"], {"status": SubmissionStatus.FAILED.value, "error_message": "SPACE_TIMEOUT"})
delete_client_space(token_info["client_space_id"])
except Exception as e:
print(f"Error in cleaning expired environment handlers: {e}")
time.sleep(15)
app = FastAPI()
_result_dict= FifoDict(max_size=100)
env_manager = EnvHandlerManager()
def _get_env_handler(
auth_token: Optional[str] = Header(None),
query_token: Optional[str] = Query(None)
) -> EnvHandler:
token = auth_token or query_token
if not token:
raise HTTPException(status_code=401, detail="Authorization token is required.")
try:
token_info = get_token_info(token)
except Exception:
raise HTTPException(status_code=401)
submission_id = token_info["submission_id"]
team_id = token_info["team_id"]
if not env_manager.exists_env_handler(submission_id):
update_submission_data(team_id, submission_id, {"status": SubmissionStatus.PROCESSING.value})
env_handler = env_manager.get_env_handler(submission_id, token_info)
if env_handler is None:
raise HTTPException(status_code=404, detail="Environment handler already closed.")
return env_handler
def _load_numpy_ndarray_json_str(json_str: str) -> np.ndarray:
"""
Load a numpy ndarray from a JSON string.
"""
data = json.loads(json_str)
return np.array(data["data"], dtype=data["dtype"]).reshape(data["shape"])
@app.post("/reset")
def reset_endpoint(env_handler: EnvHandler = Depends(_get_env_handler)):
"""
Reset the environment.
"""
env_handler.reset_env()
return {"success": True}
@app.get("/get_current_state")
def get_current_state_endpoint(env_handler: EnvHandler = Depends(_get_env_handler)):
"""
Get the current state of the environment.
"""
state = env_handler.get_current_state()
data = {
"done": env_handler.has_done,
"cur_scene_done": env_handler.has_scene_done,
"state": state,
}
return Response(content=pickle.dumps(data), media_type="application/octet-stream")
@app.post("/execute_action")
def execute_action_endpoint(
plan_traj: str = Body(..., embed=True),
transaction_id: str = Body(..., embed=True),
auth_token: str = Header(...),
env_handler: EnvHandler = Depends(_get_env_handler)
):
"""
Execute the action based on the planned trajectory.
Args:
plan_traj (str): The planned trajectory in JSON format.
transaction_id (str): The unique transaction ID for caching results.
env_handler (EnvHandler): The environment handler instance.
Returns:
Response: The response containing the execution result.
"""
cache_result = _result_dict.get(transaction_id)
if cache_result is not None:
return Response(content=cache_result, media_type="application/octet-stream")
if env_handler.has_done:
result = pickle.dumps({"done": True, "cur_scene_done": True, "state": env_handler.get_current_state()})
_result_dict.push(transaction_id, result)
return Response(content=result, media_type="application/octet-stream")
plan_traj = _load_numpy_ndarray_json_str(plan_traj)
execute_result = env_handler.execute_action(plan_traj)
if execute_result.done:
token_info = get_token_info(auth_token)
env_manager.close_env_handler(token_info["submission_id"])
delete_client_space(token_info["client_space_id"])
final_score = env_handler.calculate_score()
update_submission_data(token_info["team_id"], token_info["submission_id"], {"status": SubmissionStatus.SUCCESS.value, "score": final_score})
hf_api.upload_folder(
repo_id=COMPETITION_ID,
folder_path=env_handler.base_output,
repo_type="dataset",
path_in_repo=f"eval_results/{token_info['submission_id']}",
)
shutil.rmtree(env_handler.base_output, ignore_errors=True)
result = pickle.dumps({"done": execute_result.done, "cur_scene_done": execute_result.cur_scene_done, "state": env_handler.get_current_state()})
_result_dict.push(transaction_id, result)
return Response(content=result, media_type="application/octet-stream")
state = env_handler.get_current_state()
result = pickle.dumps({"done": execute_result.done, "cur_scene_done": execute_result.cur_scene_done, "state": state})
_result_dict.push(transaction_id, result)
return Response(content=result, media_type="application/octet-stream")
@app.get("/submition_info")
def main_page_endpoint(env_handler: EnvHandler = Depends(_get_env_handler)):
"""
Endpoint to display the submission logs.
"""
log_str = "\n".join(env_handler.log_list)
html_content = f"""
<html><body><pre>{log_str}</pre></body></html>
<script>
setTimeout(function() {{
window.location.reload();
}}, 5000);
</script>
"""
return HTMLResponse(content=html_content)
@app.get("/")
def main_page_endpoint(
admin_token: Optional[str] = Query(None),
):
"""
Main page endpoint to display logs.
"""
if admin_token != ADMIN_TOKEN:
html_content = f"""
<html>
running
</html>
"""
return HTMLResponse(content=html_content)
system_info = get_system_status()
html_content = f"""
<html>
<head>
<title>System Status</title>
</head>
<body>
<h1>System Status</h1>
<pre>{json.dumps(system_info, indent=4)}</pre>
</body>
</html>
"""
return HTMLResponse(content=html_content)
uvicorn.run(app, host="0.0.0.0", port=7860, workers=1)
|