hugsim_web_server_0 / code /scene /gaussian_model.py
hyzhou404's picture
private scenes
7f3c2df
import torch
import numpy as np
from utils.general_utils import inverse_sigmoid, get_expon_lr_func, build_rotation
from torch import nn
import os
from utils.system_utils import mkdir_p
from plyfile import PlyData, PlyElement
from utils.sh_utils import RGB2SH, SH2RGB
from simple_knn._C import distCUDA2
from utils.graphics_utils import BasicPointCloud
from utils.general_utils import strip_symmetric, build_scaling_rotation
import open3d as o3d
import tinycudann as tcnn
from math import sqrt
from scene.ground_model import GroundModel
from io import BytesIO
class GaussianModel:
def setup_functions(self):
def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation):
L = build_scaling_rotation(scaling_modifier * scaling, rotation)
actual_covariance = L @ L.transpose(1, 2)
symm = strip_symmetric(actual_covariance)
return symm
self.scaling_activation = torch.exp
self.scaling_inverse_activation = torch.log
self.covariance_activation = build_covariance_from_scaling_rotation
self.opacity_activation = torch.sigmoid
self.inverse_opacity_activation = torch.logit
self.rotation_activation = torch.nn.functional.normalize
def __init__(self, sh_degree : int, feat_mutable=True, affine=False, ground_args=None):
self.active_sh_degree = 0
self.max_sh_degree = sh_degree
self._xyz = torch.empty(0)
self._features_dc = torch.empty(0)
self._features_rest = torch.empty(0)
self._feats3D = torch.empty(0)
self._scaling = torch.empty(0)
self._rotation = torch.empty(0)
self._opacity = torch.empty(0)
self.max_radii2D = torch.empty(0)
self.xyz_gradient_accum = torch.empty(0)
self.denom = torch.empty(0)
self.optimizer = None
self.percent_dense = 0
self.spatial_lr_scale = 0
self.feat_mutable = feat_mutable
self.setup_functions()
self.pos_enc = tcnn.Encoding(
n_input_dims=3,
encoding_config={"otype": "Frequency", "n_frequencies": 2},
)
self.dir_enc = tcnn.Encoding(
n_input_dims=3,
encoding_config={
"otype": "SphericalHarmonics",
"degree": 3,
},
)
self.affine = affine
if affine:
self.appearance_model = tcnn.Network(
n_input_dims=self.pos_enc.n_output_dims + self.dir_enc.n_output_dims,
n_output_dims=12,
network_config={
"otype": "FullyFusedMLP",
"activation": "ReLU",
"output_activation": "None",
"n_neurons": 32,
"n_hidden_layers": 2,
}
)
else:
self.appearance_model = None
if ground_args:
self.ground_model = GroundModel(sh_degree, model_args=ground_args, finetune=True)
else:
self.ground_model = None
def capture(self):
if self.ground_model is not None:
ground_model_params = self.ground_model.capture()
else:
ground_model_params = None
return (
self.active_sh_degree,
self._xyz,
self._features_dc,
self._features_rest,
self._feats3D,
self._scaling,
self._rotation,
self._opacity,
self.spatial_lr_scale,
self.appearance_model.state_dict(),
ground_model_params,
)
def restore(self, model_args, training_args):
(self.active_sh_degree,
self._xyz,
self._features_dc,
self._features_rest,
self._feats3D,
self._scaling,
self._rotation,
self._opacity,
self.spatial_lr_scale,
appearance_state_dict,
ground_model_params,
) = model_args
self.appearance_model.load_state_dict(appearance_state_dict, strict=False)
if training_args is not None:
self.training_setup(training_args)
if ground_model_params is not None:
self.ground_model = GroundModel(self.max_sh_degree, model_args=ground_model_params)
@property
def get_scaling(self):
return self.scaling_activation(self._scaling)
@property
def get_full_scaling(self):
assert self.ground_model is not None
return torch.cat([self.scaling_activation(self._scaling), self.ground_model.get_scaling])
@property
def get_rotation(self):
return self.rotation_activation(self._rotation)
@property
def get_full_rotation(self):
assert self.ground_model is not None
return torch.cat([self.rotation_activation(self._rotation), self.ground_model.get_rotation])
@property
def get_xyz(self):
return self._xyz
@property
def get_full_xyz(self):
assert self.ground_model is not None
return torch.cat([self._xyz, self.ground_model.get_xyz])
@property
def get_features(self):
features_dc = self._features_dc
features_rest = self._features_rest
return torch.cat((features_dc, features_rest), dim=1)
@property
def get_full_features(self):
assert self.ground_model is not None
sh = torch.cat((self._features_dc, self._features_rest), dim=1)
return torch.cat([sh, self.ground_model.get_features])
@property
def get_3D_features(self):
return torch.softmax(self._feats3D, dim=-1)
@property
def get_full_3D_features(self):
assert self.ground_model is not None
return torch.cat([torch.softmax(self._feats3D, dim=-1), self.ground_model.get_3D_features])
@property
def get_opacity(self):
return self.opacity_activation(self._opacity)
@property
def get_full_opacity(self):
assert self.ground_model is not None
return torch.cat([self.opacity_activation(self._opacity), self.ground_model.get_opacity])
# def get_covariance(self, scaling_modifier = 1):
# return self.covariance_activation(self.get_scaling, scaling_modifier, self._rotation)
def oneupSHdegree(self):
if self.active_sh_degree < self.max_sh_degree:
self.active_sh_degree += 1
def create_from_pcd(self, pcd : BasicPointCloud, spatial_lr_scale : float):
# self.spatial_lr_scale = 1
self.spatial_lr_scale = spatial_lr_scale
fused_point_cloud = torch.tensor(np.asarray(pcd.points)).float().cuda()
fused_color = RGB2SH(torch.tensor(np.asarray(pcd.colors)).float().cuda())
features = torch.zeros((fused_color.shape[0], 3, (self.max_sh_degree + 1) ** 2)).float().cuda()
features[:, :3, 0 ] = fused_color
features[:, 3:, 1:] = 0.0
if self.feat_mutable:
feats3D = torch.rand(fused_color.shape[0], 20).float().cuda()
self._feats3D = nn.Parameter(feats3D.requires_grad_(True))
else:
feats3D = torch.zeros(fused_color.shape[0], 20).float().cuda()
feats3D[:, 13] = 1
self._feats3D = feats3D
print("Number of points at initialization : ", fused_point_cloud.shape[0])
dist2 = torch.clamp_min(distCUDA2(torch.from_numpy(np.asarray(pcd.points)).float().cuda()), 0.0000001)
scales = torch.log(torch.sqrt(dist2))[...,None].repeat(1, 3)
rots = torch.zeros((fused_point_cloud.shape[0], 4), device="cuda")
rots[:, 0] = 1
opacities = inverse_sigmoid(0.1 * torch.ones((fused_point_cloud.shape[0], 1), dtype=torch.float, device="cuda"))
self._xyz = nn.Parameter(fused_point_cloud.requires_grad_(True))
self._features_dc = nn.Parameter(features[:,:,0:1].transpose(1, 2).contiguous().requires_grad_(True))
self._features_rest = nn.Parameter(features[:,:,1:].transpose(1, 2).contiguous().requires_grad_(True))
self._scaling = nn.Parameter(scales.requires_grad_(True))
self._rotation = nn.Parameter(rots.requires_grad_(True))
self._opacity = nn.Parameter(opacities.requires_grad_(True))
self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda")
def training_setup(self, training_args):
self.percent_dense = training_args.percent_dense
self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
# self.spatial_lr_scale /= 3
l = [
{'params': [self._xyz], 'lr': training_args.position_lr_init*self.spatial_lr_scale, "name": "xyz"},
{'params': [self._features_dc], 'lr': training_args.feature_lr, "name": "f_dc"},
{'params': [self._features_rest], 'lr': training_args.feature_lr / 20.0, "name": "f_rest"},
{'params': [self._opacity], 'lr': training_args.opacity_lr, "name": "opacity"},
{'params': [self._scaling], 'lr': training_args.scaling_lr*self.spatial_lr_scale, "name": "scaling"},
{'params': [self._rotation], 'lr': training_args.rotation_lr, "name": "rotation"},
]
if self.affine:
l.append({'params': [*self.appearance_model.parameters()], 'lr': 1e-3, "name": "appearance_model"})
if self.feat_mutable:
l.append({'params': [self._feats3D], 'lr': 1e-2, "name": "feats3D"})
if self.ground_model is not None:
self.ground_optimizer = self.ground_model.optimizer
else:
self.ground_optimizer = None
self.optimizer = torch.optim.Adam(l, lr=0.0, eps=1e-15)
self.xyz_scheduler_args = get_expon_lr_func(lr_init=training_args.position_lr_init*self.spatial_lr_scale,
lr_final=training_args.position_lr_final*self.spatial_lr_scale,
lr_delay_mult=training_args.position_lr_delay_mult,
max_steps=training_args.position_lr_max_steps)
def update_learning_rate(self, iteration):
''' Learning rate scheduling per step '''
for param_group in self.optimizer.param_groups:
if param_group["name"] == "xyz":
lr = self.xyz_scheduler_args(iteration)
param_group['lr'] = lr
return lr
def construct_list_of_attributes(self):
l = ['x', 'y', 'z', 'nx', 'ny', 'nz']
# All channels except the 3 DC
for i in range(self._features_dc.shape[1]*self._features_dc.shape[2]):
l.append('f_dc_{}'.format(i))
for i in range(self._features_rest.shape[1]*self._features_rest.shape[2]):
l.append('f_rest_{}'.format(i))
for i in range(self._feats3D.shape[1]):
l.append('semantic_{}'.format(i))
l.append('opacity')
for i in range(self._scaling.shape[1]):
l.append('scale_{}'.format(i))
for i in range(self._rotation.shape[1]):
l.append('rot_{}'.format(i))
return l
def save_ply(self, path=None):
mkdir_p(os.path.dirname(path))
if self.ground_model is not None:
xyz = self.get_full_xyz.detach().cpu().numpy()
normals = np.zeros_like(xyz)
f_dc = torch.cat([self._features_dc, self.ground_model._features_dc]).detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
f_rest = torch.cat([self._features_rest, self.ground_model._features_rest]).detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
feats3D = torch.cat([self._feats3D, self.ground_model._feats3D]).detach().cpu().numpy()
opacities = torch.cat([self._opacity, self.ground_model._opacity]).detach().cpu().numpy()
scale = self.scaling_inverse_activation(self.get_full_scaling).detach().cpu().numpy()
rotation = torch.cat([self._rotation, self.ground_model._rotation]).detach().cpu().numpy()
else:
xyz = self.get_xyz.detach().cpu().numpy()
normals = np.zeros_like(xyz)
f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
f_rest = self._features_rest.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
feats3D = self._feats3D.detach().cpu().numpy()
opacities = self._opacity.detach().cpu().numpy()
scale = self.scaling_inverse_activation(self.get_scaling).detach().cpu().numpy()
rotation = self._rotation.detach().cpu().numpy()
dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()]
elements = np.empty(xyz.shape[0], dtype=dtype_full)
attributes = np.concatenate((xyz, normals, f_dc, f_rest, feats3D, opacities, scale, rotation), axis=1)
elements[:] = list(map(tuple, attributes))
el = PlyElement.describe(elements, 'vertex')
plydata = PlyData([el])
if path is not None:
plydata.write(path)
return plydata
def save_splat(self, ply_path, splat_path):
plydata = self.save_ply(ply_path)
vert = plydata["vertex"]
sorted_indices = np.argsort(
-np.exp(vert["scale_0"] + vert["scale_1"] + vert["scale_2"])
/ (1 + np.exp(-vert["opacity"]))
)
buffer = BytesIO()
for idx in sorted_indices:
v = plydata["vertex"][idx]
position = np.array([v["x"], v["y"], v["z"]], dtype=np.float32)
scales = np.exp(
np.array(
[v["scale_0"], v["scale_1"], v["scale_2"]],
dtype=np.float32,
)
)
rot = np.array(
[v["rot_0"], v["rot_1"], v["rot_2"], v["rot_3"]],
dtype=np.float32,
)
SH_C0 = 0.28209479177387814
color = np.array(
[
0.5 + SH_C0 * v["f_dc_0"],
0.5 + SH_C0 * v["f_dc_1"],
0.5 + SH_C0 * v["f_dc_2"],
1 / (1 + np.exp(-v["opacity"])),
]
)
buffer.write(position.tobytes())
buffer.write(scales.tobytes())
buffer.write((color * 255).clip(0, 255).astype(np.uint8).tobytes())
buffer.write(
((rot / np.linalg.norm(rot)) * 128 + 128)
.clip(0, 255)
.astype(np.uint8)
.tobytes()
)
with open(splat_path, "wb") as f:
f.write(buffer.getvalue())
def save_semantic_pcd(self, path):
color_dict = {
0: np.array([128, 64, 128]), # Road
1: np.array([244, 35, 232]), # Sidewalk
2: np.array([70, 70, 70]), # Building
3: np.array([102, 102, 156]), # Wall
4: np.array([190, 153, 153]), # Fence
5: np.array([153, 153, 153]), # Pole
6: np.array([250, 170, 30]), # Traffic Light
7: np.array([220, 220, 0]), # Traffic Sign
8: np.array([107, 142, 35]), # Vegetation
9: np.array([152, 251, 152]), # Terrain
10: np.array([0, 0, 0]), # Black (trainId 10)
11: np.array([70, 130, 180]), # Sky
12: np.array([220, 20, 60]), # Person
13: np.array([255, 0, 0]), # Rider
14: np.array([0, 0, 142]), # Car
15: np.array([0, 0, 70]), # Truck
16: np.array([0, 60, 100]), # Bus
17: np.array([0, 80, 100]), # Train
18: np.array([0, 0, 230]), # Motorcycle
19: np.array([119, 11, 32]) # Bicycle
}
semantic_idx = torch.argmax(self.get_full_3D_features, dim=-1, keepdim=True)
opacities = self.get_full_opacity[:, 0]
mask = ((semantic_idx != 10)[:, 0]) & ((semantic_idx != 8)[:, 0]) & (opacities > 0.2)
semantic_idx = semantic_idx[mask]
semantic_rgb = torch.zeros_like(semantic_idx).repeat(1, 3)
for idx in range(20):
rgb = torch.from_numpy(color_dict[idx]).to(semantic_rgb.device)[None, :]
semantic_rgb[(semantic_idx == idx)[:, 0], :] = rgb
semantic_rgb = semantic_rgb.float() / 255.0
pcd_xyz = self.get_full_xyz[mask]
smt_pcd = o3d.geometry.PointCloud()
smt_pcd.points = o3d.utility.Vector3dVector(pcd_xyz.detach().cpu().numpy())
smt_pcd.colors = o3d.utility.Vector3dVector(semantic_rgb.detach().cpu().numpy())
o3d.io.write_point_cloud(path, smt_pcd)
def save_vis_ply(self, path):
mkdir_p(os.path.dirname(path))
xyz = self.get_xyz.detach().cpu().numpy()
if self.ground_model:
xyz = np.concatenate([xyz, self.ground_model.get_xyz.detach().cpu().numpy()])
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(xyz)
colors = SH2RGB(self._features_dc[:, 0, :].detach().cpu().numpy()).clip(0, 1)
if self.ground_model:
ground_colors = SH2RGB(self.ground_model._features_dc[:, 0, :].detach().cpu().numpy()).clip(0, 1)
colors = np.concatenate([colors, ground_colors])
pcd.colors = o3d.utility.Vector3dVector(colors)
o3d.io.write_point_cloud(path, pcd)
def reset_opacity(self):
opacities_new = inverse_sigmoid(torch.min(self.get_opacity, torch.ones_like(self.get_opacity)*0.01))
optimizable_tensors = self.replace_tensor_to_optimizer(opacities_new, "opacity")
self._opacity = optimizable_tensors["opacity"]
def load_ply(self, path):
plydata = PlyData.read(path)
xyz = np.stack((np.asarray(plydata.elements[0]["x"]),
np.asarray(plydata.elements[0]["y"]),
np.asarray(plydata.elements[0]["z"])), axis=1)
opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis]
features_dc = np.zeros((xyz.shape[0], 3, 1))
features_dc[:, 0, 0] = np.asarray(plydata.elements[0]["f_dc_0"])
features_dc[:, 1, 0] = np.asarray(plydata.elements[0]["f_dc_1"])
features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"])
extra_f_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("f_rest_")]
assert len(extra_f_names)==3*(self.max_sh_degree + 1) ** 2 - 3
features_extra = np.zeros((xyz.shape[0], len(extra_f_names)))
for idx, attr_name in enumerate(extra_f_names):
features_extra[:, idx] = np.asarray(plydata.elements[0][attr_name])
# Reshape (P,F*SH_coeffs) to (P, F, SH_coeffs except DC)
features_extra = features_extra.reshape((features_extra.shape[0], 3, (self.max_sh_degree + 1) ** 2 - 1))
scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")]
scales = np.zeros((xyz.shape[0], len(scale_names)))
for idx, attr_name in enumerate(scale_names):
scales[:, idx] = np.asarray(plydata.elements[0][attr_name])
rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot")]
rots = np.zeros((xyz.shape[0], len(rot_names)))
for idx, attr_name in enumerate(rot_names):
rots[:, idx] = np.asarray(plydata.elements[0][attr_name])
self._xyz = nn.Parameter(torch.tensor(xyz, dtype=torch.float, device="cuda").requires_grad_(True))
self._features_dc = nn.Parameter(torch.tensor(features_dc, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True))
self._features_rest = nn.Parameter(torch.tensor(features_extra, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True))
self._opacity = nn.Parameter(torch.tensor(opacities, dtype=torch.float, device="cuda").requires_grad_(True))
self._scaling = nn.Parameter(torch.tensor(scales, dtype=torch.float, device="cuda").requires_grad_(True))
self._rotation = nn.Parameter(torch.tensor(rots, dtype=torch.float, device="cuda").requires_grad_(True))
self.active_sh_degree = self.max_sh_degree
def replace_tensor_to_optimizer(self, tensor, name):
optimizable_tensors = {}
for group in self.optimizer.param_groups:
if group["name"] == name:
stored_state = self.optimizer.state.get(group['params'][0], None)
if stored_state is not None:
stored_state["exp_avg"] = torch.zeros_like(tensor)
stored_state["exp_avg_sq"] = torch.zeros_like(tensor)
del self.optimizer.state[group['params'][0]]
group["params"][0] = nn.Parameter(tensor.requires_grad_(True))
self.optimizer.state[group['params'][0]] = stored_state
optimizable_tensors[group["name"]] = group["params"][0]
else:
group["params"][0] = nn.Parameter(tensor.requires_grad_(True))
optimizable_tensors[group["name"]] = group["params"][0]
return optimizable_tensors
def _prune_optimizer(self, mask):
optimizable_tensors = {}
for group in self.optimizer.param_groups:
if group['name'] == 'appearance_model':
continue
stored_state = self.optimizer.state.get(group['params'][0], None)
if stored_state is not None:
stored_state["exp_avg"] = stored_state["exp_avg"][mask]
stored_state["exp_avg_sq"] = stored_state["exp_avg_sq"][mask]
del self.optimizer.state[group['params'][0]]
group["params"][0] = nn.Parameter((group["params"][0][mask].requires_grad_(True)))
self.optimizer.state[group['params'][0]] = stored_state
optimizable_tensors[group["name"]] = group["params"][0]
else:
group["params"][0] = nn.Parameter(group["params"][0][mask].requires_grad_(True))
optimizable_tensors[group["name"]] = group["params"][0]
return optimizable_tensors
def prune_points(self, mask):
valid_points_mask = ~mask
optimizable_tensors = self._prune_optimizer(valid_points_mask)
self._xyz = optimizable_tensors["xyz"]
self._features_dc = optimizable_tensors["f_dc"]
self._features_rest = optimizable_tensors["f_rest"]
if self.feat_mutable:
self._feats3D = optimizable_tensors["feats3D"]
else:
self._feats3D = self._feats3D[1, :].repeat((self._xyz.shape[0], 1))
self._opacity = optimizable_tensors["opacity"]
self._scaling = optimizable_tensors["scaling"]
self._rotation = optimizable_tensors["rotation"]
self.xyz_gradient_accum = self.xyz_gradient_accum[valid_points_mask]
self.denom = self.denom[valid_points_mask]
self.max_radii2D = self.max_radii2D[valid_points_mask]
def cat_tensors_to_optimizer(self, tensors_dict):
optimizable_tensors = {}
for group in self.optimizer.param_groups:
if group['name'] not in tensors_dict:
continue
assert len(group["params"]) == 1
extension_tensor = tensors_dict[group["name"]]
stored_state = self.optimizer.state.get(group["params"][0], None)
if stored_state is not None:
stored_state["exp_avg"] = torch.cat((stored_state["exp_avg"], torch.zeros_like(extension_tensor)), dim=0)
stored_state["exp_avg_sq"] = torch.cat((stored_state["exp_avg_sq"], torch.zeros_like(extension_tensor)), dim=0)
del self.optimizer.state[group["params"][0]]
group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True))
self.optimizer.state[group["params"][0]] = stored_state
optimizable_tensors[group["name"]] = group["params"][0]
else:
group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True))
optimizable_tensors[group["name"]] = group["params"][0]
return optimizable_tensors
def densification_postfix(self, new_xyz, new_features_dc, new_features_rest, new_feats3D, new_opacities, new_scaling, new_rotation):
d = {"xyz": new_xyz,
"f_dc": new_features_dc,
"f_rest": new_features_rest,
"feats3D": new_feats3D,
"opacity": new_opacities,
"scaling" : new_scaling,
"rotation" : new_rotation}
optimizable_tensors = self.cat_tensors_to_optimizer(d)
self._xyz = optimizable_tensors["xyz"]
self._features_dc = optimizable_tensors["f_dc"]
if self.feat_mutable:
self._feats3D = optimizable_tensors["feats3D"]
else:
self._feats3D = self._feats3D[1, :].repeat((self._xyz.shape[0], 1))
self._features_rest = optimizable_tensors["f_rest"]
self._opacity = optimizable_tensors["opacity"]
self._scaling = optimizable_tensors["scaling"]
self._rotation = optimizable_tensors["rotation"]
self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda")
self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda")
def densify_and_split(self, grads, grad_threshold, scene_extent, N=2):
n_init_points = self.get_xyz.shape[0]
# Extract points that satisfy the gradient condition
padded_grad = torch.zeros((n_init_points), device="cuda")
padded_grad[:grads.shape[0]] = grads.squeeze()
selected_pts_mask = torch.where(padded_grad >= grad_threshold, True, False)
selected_pts_mask = torch.logical_and(selected_pts_mask,
torch.max(self.get_scaling, dim=1).values > self.percent_dense*scene_extent)
stds = self.get_scaling[selected_pts_mask].repeat(N,1)
means =torch.zeros((stds.size(0), 3),device="cuda")
samples = torch.normal(mean=means, std=stds)
rots = build_rotation(self._rotation[selected_pts_mask]).repeat(N,1,1)
new_xyz = torch.bmm(rots, samples.unsqueeze(-1)).squeeze(-1) + self.get_xyz[selected_pts_mask].repeat(N, 1)
new_scaling = self.scaling_inverse_activation(self.get_scaling[selected_pts_mask].repeat(N,1) / (0.8*N))
new_rotation = self._rotation[selected_pts_mask].repeat(N,1)
new_features_dc = self._features_dc[selected_pts_mask].repeat(N,1,1)
new_features_rest = self._features_rest[selected_pts_mask].repeat(N,1,1)
new_feats3D = self._feats3D[selected_pts_mask].repeat(N,1)
new_opacity = self._opacity[selected_pts_mask].repeat(N,1)
self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_feats3D, new_opacity, new_scaling, new_rotation)
prune_filter = torch.cat((selected_pts_mask, torch.zeros(N * selected_pts_mask.sum(), device="cuda", dtype=bool)))
self.prune_points(prune_filter)
def densify_and_clone(self, grads, grad_threshold, scene_extent):
# Extract points that satisfy the gradient condition
selected_pts_mask = torch.where(torch.norm(grads, dim=-1) >= grad_threshold, True, False)
selected_pts_mask = torch.logical_and(selected_pts_mask,
torch.max(self.get_scaling, dim=1).values <= self.percent_dense*scene_extent)
new_xyz = self._xyz[selected_pts_mask]
new_features_dc = self._features_dc[selected_pts_mask]
new_features_rest = self._features_rest[selected_pts_mask]
new_feats3D = self._feats3D[selected_pts_mask]
new_opacities = self._opacity[selected_pts_mask]
new_scaling = self._scaling[selected_pts_mask]
new_rotation = self._rotation[selected_pts_mask]
self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_feats3D, new_opacities, new_scaling, new_rotation)
def densify_and_prune(self, max_grad, min_opacity, extent, max_screen_size, cam_pos=None):
grads = self.xyz_gradient_accum / self.denom
grads[grads.isnan()] = 0.0
self.densify_and_clone(grads, max_grad, extent)
self.densify_and_split(grads, max_grad, extent)
prune_mask = (self.get_opacity < min_opacity).squeeze()
if max_screen_size:
big_points_vs = self.max_radii2D > max_screen_size
if cam_pos is not None:
# points_cam_dist = torch.abs(self.get_xyz[:, None, :] - cam_pos[None, ...])
# points_cam_nearest_idx = torch.argmin(torch.norm(points_cam_dist, dim=-1), dim=1)
# points_cam_dist = points_cam_dist[torch.arange(points_cam_dist.shape[0]), points_cam_nearest_idx, :]
# near_mask1 = (points_cam_dist[:, 1] < 5) & (points_cam_dist[:, 0] < 10) & (points_cam_dist[:, 2] < 10)
# big_points_ws1 = near_mask1 & (self.get_scaling.max(dim=1).values > 1.0)
# near_mask2 = (points_cam_dist[:, 1] < 10) & (points_cam_dist[:, 0] < 20) & (points_cam_dist[:, 2] < 20)
# big_points_ws2 = near_mask2 & (self.get_scaling.max(dim=1).values > 3.0)
# big_points_ws = (self.get_scaling.max(dim=1).values > 10.0) | big_points_ws1 | big_points_ws2
big_points_ws = self.get_scaling.max(dim=1).values > 10
prune_mask = torch.logical_or(torch.logical_or(prune_mask, big_points_vs), big_points_ws)
else:
big_points_ws = self.get_scaling.max(dim=1).values > 5
prune_mask = torch.logical_or(torch.logical_or(prune_mask, big_points_vs), big_points_ws)
self.prune_points(prune_mask)
torch.cuda.empty_cache()
def add_densification_stats_grad(self, tensor_grad, update_filter):
self.xyz_gradient_accum[update_filter] += torch.norm(tensor_grad[update_filter,:2], dim=-1, keepdim=True)
self.denom[update_filter] += 1