import sys import os import pickle import json import threading import time import io import enum import hugsim_env from collections import deque, OrderedDict from datetime import datetime from typing import Any, Dict sys.path.append(os.getcwd()) from fastapi import FastAPI, Body, Header, Depends, HTTPException from fastapi.responses import HTMLResponse, Response from omegaconf import OmegaConf from huggingface_hub import HfApi, hf_hub_download import open3d as o3d import numpy as np import gymnasium import uvicorn from sim.utils.sim_utils import traj2control, traj_transform_to_global from sim.utils.score_calculator import hugsim_evaluate HF_TOKEN = os.getenv('HF_TOKEN', None) COMPETITION_ID = os.getenv('COMPETITION_ID', None) hf_api = HfApi(token=HF_TOKEN) class SubmissionStatus(enum.Enum): PENDING = 0 QUEUED = 1 PROCESSING = 2 SUCCESS = 3 FAILED = 4 def get_token_info(token: str) -> Dict[str, Any]: token_info_path = hf_hub_download( repo_id=COMPETITION_ID, filename=f"token_data_info/{token}.json", repo_type="dataset", token=token ) with open(token_info_path, 'r') as f: token_info = json.load(f) return token_info def download_submission_info(team_id: str) -> Dict[str, Any]: """ Download the submission info from Hugging Face Hub. Args: team_id (str): The team ID. Returns: Dict[str, Any]: The submission info. """ submission_info_path = hf_hub_download( repo_id=COMPETITION_ID, filename=f"submission_info/{team_id}.json", repo_type="dataset", token=HF_TOKEN ) with open(submission_info_path, 'r') as f: submission_info = json.load(f) return submission_info def upload_submission_info(team_id: str, user_submission_info: Dict[str, Any]): user_submission_info_json = json.dumps(user_submission_info, indent=4) user_submission_info_json_bytes = user_submission_info_json.encode("utf-8") user_submission_info_json_buffer = io.BytesIO(user_submission_info_json_bytes) hf_api.upload_file( path_or_fileobj=user_submission_info_json_buffer, path_in_repo=f"submission_info/{team_id}.json", repo_id=COMPETITION_ID, repo_type="dataset", ) def update_submission_status(team_id: str, submission_id: str, status: int): user_submission_info = download_submission_info(team_id) for submission in user_submission_info["submissions"]: if submission["submission_id"] == submission_id: submission["status"] = status break upload_submission_info(team_id, user_submission_info) def delete_client_space(client_space_id: str): hf_api.delete_repo( repo_id=client_space_id, repo_type="space" ) class FifoDict: def __init__(self, max_size: int): self.max_size = max_size self._order_dict = OrderedDict() self.locker = threading.Lock() def push(self, key: str, value: Any): with self.locker: if key in self._order_dict: self._order_dict.move_to_end(key) return if len(self._order_dict) >= self.max_size: self._order_dict.popitem(last=False) self._order_dict[key] = value def get(self, key: str) -> Any: return self._order_dict.get(key, None) class EnvHandler: def __init__(self, cfg, output): self.cfg = cfg self.output = output self.env = gymnasium.make('hugsim_env/HUGSim-v0', cfg=cfg, output=output) self._lock = threading.Lock() self.reset_env() def close(self): """ Close the environment and release resources. """ self.env.close() self._log("Environment closed.") def reset_env(self): """ Reset the environment and initialize variables. """ self._cnt = 0 self._done = False self._save_data = {'type': 'closeloop', 'frames': []} self._obs, self._info = self.env.reset() self._log_list = deque(maxlen=100) self._log("Environment reset complete.") def get_current_state(self): """ Get the current state of the environment. """ return { "obs": self._obs, "info": self._info, } @property def has_done(self) -> bool: """ Check if the episode is done. Returns: bool: True if the episode is done, False otherwise. """ return self._done @property def log_list(self) -> deque: """ Get the log list. Returns: deque: The log list containing recent log messages. """ return self._log_list def execute_action(self, plan_traj: np.ndarray) -> bool: """ Execute the action based on the planned trajectory. Args: plan_traj (Any): The planned trajectory to follow. Returns: bool: True if the episode is done, False otherwise. """ acc, steer_rate = traj2control(plan_traj, self._info) action = {'acc': acc, 'steer_rate': steer_rate} self._log("Executing action:", action) self._obs, _, terminated, truncated, self._info = self.env.step(action) self._cnt += 1 self._done = terminated or truncated or self._cnt > 400 imu_plan_traj = plan_traj[:, [1, 0]] imu_plan_traj[:, 1] *= -1 global_traj = traj_transform_to_global(imu_plan_traj, self._info['ego_box']) self._save_data['frames'].append({ 'time_stamp': self._info['timestamp'], 'is_key_frame': True, 'ego_box': self._info['ego_box'], 'obj_boxes': self._info['obj_boxes'], 'obj_names': ['car' for _ in self._info['obj_boxes']], 'planned_traj': { 'traj': global_traj, 'timestep': 0.5 }, 'collision': self._info['collision'], 'rc': self._info['rc'] }) if not self._done: return False with open(os.path.join(self.output, 'data.pkl'), 'wb') as wf: pickle.dump([self._save_data], wf) ground_xyz = np.asarray(o3d.io.read_point_cloud(os.path.join(self.output, 'ground.ply')).points) scene_xyz = np.asarray(o3d.io.read_point_cloud(os.path.join(self.output, 'scene.ply')).points) results = hugsim_evaluate([self._save_data], ground_xyz, scene_xyz) with open(os.path.join(self.output, 'eval.json'), 'w') as f: json.dump(results, f) self._log("Evaluation results saved.") return True def _log(self, *messages): log_message = f"[{str(datetime.now())}]" + " ".join([str(msg) for msg in messages]) + "\n" with self._lock: self._log_list.append(log_message) class EnvHandlerManager: def __init__(self): self._env_handlers = {} self._lock = threading.Lock() def _generate_env_handler(self, env_id: str): base_path = os.path.join(os.path.dirname(__file__), 'docker', "web_server_config", 'nuscenes_base.yaml') scenario_path = os.path.join(os.path.dirname(__file__), 'docker', "web_server_config", 'scene-0383-medium-00.yaml') camera_path = os.path.join(os.path.dirname(__file__), 'docker', "web_server_config", 'nuscenes_camera.yaml') kinematic_path = os.path.join(os.path.dirname(__file__), 'docker', "web_server_config", 'kinematic.yaml') scenario_config = OmegaConf.load(scenario_path) base_config = OmegaConf.load(base_path) camera_config = OmegaConf.load(camera_path) kinematic_config = OmegaConf.load(kinematic_path) cfg = OmegaConf.merge( {"scenario": scenario_config}, {"base": base_config}, {"camera": camera_config}, {"kinematic": kinematic_config} ) model_path = os.path.join(cfg.base.model_base, cfg.scenario.scene_name) model_config = OmegaConf.load(os.path.join(model_path, 'cfg.yaml')) model_config.update({"model_path": "/app/app_datas/PAMI2024/release/ss/scenes/nuscenes/scene-0383"}) cfg.update(model_config) cfg.base.output_dir = "/app/app_datas/env_output" output = os.path.join(cfg.base.output_dir, f"{env_id}_hugsim_env") os.makedirs(output, exist_ok=True) return EnvHandler(cfg, output) def get_env_handler(self, env_id: str) -> EnvHandler: """ Get the environment handler for the given environment ID. Args: env_id (str): The environment ID. Returns: EnvHandler: The environment handler instance. """ with self._lock: if env_id not in self._env_handlers: self._env_handlers[env_id] = self._generate_env_handler(env_id) return self._env_handlers[env_id] app = FastAPI() _result_dict= FifoDict(max_size=100) env_manager = EnvHandlerManager() def _get_env_handler(auth_token: str = Header(...)) -> EnvHandler: try: token_info = get_token_info(auth_token) except Exception: raise HTTPException(status_code=401) return env_manager.get_env_handler(token_info["submission_id"]) def _load_numpy_ndarray_json_str(json_str: str) -> np.ndarray: """ Load a numpy ndarray from a JSON string. """ data = json.loads(json_str) return np.array(data["data"], dtype=data["dtype"]).reshape(data["shape"]) @app.post("/reset") def reset_endpoint(env_handler: EnvHandler = Depends(_get_env_handler)): """ Reset the environment. """ env_handler.reset_env() return {"success": True} @app.get("/get_current_state") def get_current_state_endpoint(env_handler: EnvHandler = Depends(_get_env_handler)): """ Get the current state of the environment. """ state = env_handler.get_current_state() return Response(content=pickle.dumps(state), media_type="application/octet-stream") @app.post("/execute_action") def execute_action_endpoint( plan_traj: str = Body(..., embed=True), transaction_id: str = Body(..., embed=True), auth_token: str = Header(...), env_handler: EnvHandler = Depends(_get_env_handler) ): """ Execute the action based on the planned trajectory. Args: plan_traj (str): The planned trajectory in JSON format. transaction_id (str): The unique transaction ID for caching results. env_handler (EnvHandler): The environment handler instance. Returns: Response: The response containing the execution result. """ cache_result = _result_dict.get(transaction_id) if cache_result is not None: return Response(content=cache_result, media_type="application/octet-stream") if env_handler.has_done: result = pickle.dumps({"done": done, "state": None}) _result_dict.push(transaction_id, result) return Response(content=result, media_type="application/octet-stream") plan_traj = _load_numpy_ndarray_json_str(plan_traj) done = env_handler.execute_action(plan_traj) if done: token_info = get_token_info(auth_token) env_manager.get_env_handler(token_info["submission_id"]).close() delete_client_space(token_info["client_space_id"]) update_submission_status(token_info["team_id"], token_info["submission_id"], SubmissionStatus.SUCCESS.value) result = pickle.dumps({"done": done, "state": None}) _result_dict.push(transaction_id, result) return Response(content=result, media_type="application/octet-stream") state = env_handler.get_current_state() result = pickle.dumps({"done": done, "state": state}) _result_dict.push(transaction_id, result) return Response(content=result, media_type="application/octet-stream") @app.get("/") def main_page_endpoint(env_handler: EnvHandler = Depends(_get_env_handler)): """ Main page endpoint to display logs. """ log_str = "\n".join(env_handler.log_list) html_content = f"""
{log_str}""" return HTMLResponse(content=html_content) uvicorn.run(app, port=7860, workers=1)