import sys import os import pickle import json import threading import time import io import enum import hugsim_env from collections import deque, OrderedDict from datetime import datetime, timedelta from typing import Any, Dict sys.path.append(os.getcwd()) from fastapi import FastAPI, Body, Header, HTTPException, Depends from fastapi.responses import HTMLResponse, Response from omegaconf import OmegaConf from huggingface_hub import HfApi, hf_hub_download import open3d as o3d import numpy as np import gymnasium import uvicorn from sim.utils.sim_utils import traj2control, traj_transform_to_global from sim.utils.score_calculator import hugsim_evaluate IN_HUGGINGFACE_SPACE = os.getenv('IN_HUGGINGFACE_SPACE', 'false') == 'true' STOP_SPACE_TIMEOUT = int(os.getenv('STOP_SPACE_TIMEOUT', '7200')) HF_TOKEN = os.getenv('HF_TOKEN', None) SPACE_PARAMS = json.loads(os.getenv('PARAMS', '{}')) class GlobalState: done = False class SubmissionStatus(enum.Enum): PENDING = 0 QUEUED = 1 PROCESSING = 2 SUCCESS = 3 FAILED = 4 def download_submission_info() -> Dict[str, Any]: """ Download the submission info from Hugging Face Hub. Args: team_id (str): The team ID. Returns: Dict[str, Any]: The submission info. """ submission_info_path = hf_hub_download( repo_id=SPACE_PARAMS["competition_id"], filename=f"submission_info/{SPACE_PARAMS['team_id']}.json", repo_type="dataset", token=HF_TOKEN ) with open(submission_info_path, 'r') as f: submission_info = json.load(f) return submission_info def upload_submission_info(user_submission_info: Dict[str, Any]): user_submission_info_json = json.dumps(user_submission_info, indent=4) user_submission_info_json_bytes = user_submission_info_json.encode("utf-8") user_submission_info_json_buffer = io.BytesIO(user_submission_info_json_bytes) api = HfApi(token=HF_TOKEN) api.upload_file( path_or_fileobj=user_submission_info_json_buffer, path_in_repo=f"submission_info/{SPACE_PARAMS['team_id']}.json", repo_id=SPACE_PARAMS["competition_id"], repo_type="dataset", ) def update_submission_status(status): user_submission_info = download_submission_info() for submission in user_submission_info["submissions"]: if submission["submission_id"] == SPACE_PARAMS["submission_id"]: submission["status"] = status break upload_submission_info(user_submission_info) def auto_stop(): """ Automatically stop the server after a certain timeout. """ stop_deadline = datetime.now() + timedelta(seconds=STOP_SPACE_TIMEOUT) while 1: if datetime.now() > stop_deadline: update_submission_status(SubmissionStatus.FAILED.value) break if GlobalState.done: update_submission_status(SubmissionStatus.SUCCESS.value) break time.sleep(60) server_space_id = SPACE_PARAMS["server_space_id"] client_space_id = SPACE_PARAMS["client_space_id"] api = HfApi(token=HF_TOKEN) api.delete_repo( repo_id=server_space_id, repo_type="space" ) api.delete_repo( repo_id=client_space_id, repo_type="space" ) if IN_HUGGINGFACE_SPACE: # Start a thread to automatically stop the server after a timeout auto_stop_thread = threading.Thread(target=auto_stop, daemon=True) auto_stop_thread.start() update_submission_status(SubmissionStatus.PROCESSING.value) class FifoDict: def __init__(self, max_size: int): self.max_size = max_size self._order_dict = OrderedDict() self.locker = threading.Lock() def push(self, key: str, value: Any): with self.locker: if key in self._order_dict: self._order_dict.move_to_end(key) return if len(self._order_dict) >= self.max_size: self._order_dict.popitem(last=False) self._order_dict[key] = value def get(self, key: str) -> Any: return self._order_dict.get(key, None) class EnvHandler: def __init__(self, cfg, output): self.cfg = cfg self.output = output self.env = gymnasium.make('hugsim_env/HUGSim-v0', cfg=cfg, output=output) self._lock = threading.Lock() self.reset_env() def reset_env(self): """ Reset the environment and initialize variables. """ self._cnt = 0 self._done = False self._save_data = {'type': 'closeloop', 'frames': []} self._obs, self._info = self.env.reset() self._log_list = deque(maxlen=100) self._log("Environment reset complete.") def get_current_state(self): """ Get the current state of the environment. """ return { "obs": self._obs, "info": self._info, } @property def has_done(self) -> bool: """ Check if the episode is done. Returns: bool: True if the episode is done, False otherwise. """ return self._done @property def log_list(self) -> deque: """ Get the log list. Returns: deque: The log list containing recent log messages. """ return self._log_list def execute_action(self, plan_traj: np.ndarray) -> bool: """ Execute the action based on the planned trajectory. Args: plan_traj (Any): The planned trajectory to follow. Returns: bool: True if the episode is done, False otherwise. """ acc, steer_rate = traj2control(plan_traj, self._info) action = {'acc': acc, 'steer_rate': steer_rate} self._log("Executing action:", action) self._obs, _, terminated, truncated, self._info = self.env.step(action) self._cnt += 1 self._done = terminated or truncated or self._cnt > 400 imu_plan_traj = plan_traj[:, [1, 0]] imu_plan_traj[:, 1] *= -1 global_traj = traj_transform_to_global(imu_plan_traj, self._info['ego_box']) self._save_data['frames'].append({ 'time_stamp': self._info['timestamp'], 'is_key_frame': True, 'ego_box': self._info['ego_box'], 'obj_boxes': self._info['obj_boxes'], 'obj_names': ['car' for _ in self._info['obj_boxes']], 'planned_traj': { 'traj': global_traj, 'timestep': 0.5 }, 'collision': self._info['collision'], 'rc': self._info['rc'] }) if not self._done: return False with open(os.path.join(self.output, 'data.pkl'), 'wb') as wf: pickle.dump([self._save_data], wf) ground_xyz = np.asarray(o3d.io.read_point_cloud(os.path.join(output, 'ground.ply')).points) scene_xyz = np.asarray(o3d.io.read_point_cloud(os.path.join(output, 'scene.ply')).points) results = hugsim_evaluate([self._save_data], ground_xyz, scene_xyz) with open(os.path.join(output, 'eval.json'), 'w') as f: json.dump(results, f) self._log("Evaluation results saved.") return True def _log(self, *messages): log_message = f"[{str(datetime.now())}]" + " ".join([str(msg) for msg in messages]) + "\n" with self._lock: self._log_list.append(log_message) class WebServer: def __init__(self, env_handler: EnvHandler, auth_token: str): self.env_handler = env_handler self.auth_token = auth_token self._init_app() self._result_dict= FifoDict(max_size=30) def run(self): uvicorn.run(self._app, host="0.0.0.0", port=7860, workers=1) def _reset_endpoint(self): self.env_handler.reset_env() return {"success": True} def _get_current_state_endpoint(self): state = self.env_handler.get_current_state() return Response(content=pickle.dumps(state), media_type="application/octet-stream") def _load_numpy_ndarray_json_str(self, json_str: str) -> np.ndarray: """ Load a numpy ndarray from a JSON string. """ data = json.loads(json_str) return np.array(data["data"], dtype=data["dtype"]).reshape(data["shape"]) def _execute_action_endpoint( self, plan_traj: str = Body(..., embed=True), transaction_id: str = Body(..., embed=True), ): cache_result = self._result_dict.get(transaction_id) if cache_result is not None: return Response(content=cache_result, media_type="application/octet-stream") if self.env_handler.has_done: result = pickle.dumps({"done": done, "state": None}) self._result_dict.push(transaction_id, result) return Response(content=result, media_type="application/octet-stream") plan_traj = self._load_numpy_ndarray_json_str(plan_traj) done = self.env_handler.execute_action(plan_traj) GlobalState.done = done if done: result = pickle.dumps({"done": done, "state": None}) self._result_dict.push(transaction_id, result) return Response(content=result, media_type="application/octet-stream") state = self.env_handler.get_current_state() result = pickle.dumps({"done": done, "state": state}) self._result_dict.push(transaction_id, result) return Response(content=result, media_type="application/octet-stream") def _main_page_endpoint(self): log_str = "\n".join(self.env_handler.log_list) html_content = f"""
{log_str}""" return HTMLResponse(content=html_content) def _verify_token(self, auth_token: str = Header(...)): if self.auth_token and self.auth_token != auth_token: raise HTTPException(status_code=401) def _init_app(self): self._app = FastAPI() self._app.add_api_route("/reset", self._reset_endpoint, methods=["POST"], dependencies=[Depends(self._verify_token)]) self._app.add_api_route("/get_current_state", self._get_current_state_endpoint, methods=["GET"], dependencies=[Depends(self._verify_token)]) self._app.add_api_route("/execute_action", self._execute_action_endpoint, methods=["POST"], dependencies=[Depends(self._verify_token)]) self._app.add_api_route("/", self._main_page_endpoint, methods=["GET"]) # TODO: add code to update submission info if __name__ == "__main__": # Using fixed paths for web server ad = "uniad" base_path = os.path.join(os.path.dirname(__file__), 'docker', "web_server_config", 'nuscenes_base.yaml') # unknown config scenario_path = os.path.join(os.path.dirname(__file__), 'docker', "web_server_config", 'scene-0383-medium-00.yaml') camera_path = os.path.join(os.path.dirname(__file__), 'docker', "web_server_config", 'nuscenes_camera.yaml') kinematic_path = os.path.join(os.path.dirname(__file__), 'docker', "web_server_config", 'kinematic.yaml') scenario_config = OmegaConf.load(scenario_path) base_config = OmegaConf.load(base_path) camera_config = OmegaConf.load(camera_path) kinematic_config = OmegaConf.load(kinematic_path) cfg = OmegaConf.merge( {"scenario": scenario_config}, {"base": base_config}, {"camera": camera_config}, {"kinematic": kinematic_config} ) cfg.base.output_dir = cfg.base.output_dir + ad model_path = os.path.join(cfg.base.model_base, cfg.scenario.scene_name) model_config = OmegaConf.load(os.path.join(model_path, 'cfg.yaml')) model_config.update({"model_path": "/app/app_datas/PAMI2024/release/ss/scenes/nuscenes/scene-0383"}) cfg.update(model_config) output = os.path.join(cfg.base.output_dir, cfg.scenario.scene_name+"_"+cfg.scenario.mode) os.makedirs(output, exist_ok=True) print("Output directory:", output) env_handler = EnvHandler(cfg, output) print("Environment handler initialized.") web_server = WebServer(env_handler, auth_token=os.getenv('HUGSIM_AUTH_TOKEN')) print("Web server initialized.") web_server.run()