# # Copyright (C) 2023, Inria # GRAPHDECO research group, https://team.inria.fr/graphdeco # All rights reserved. # # This software is free for non-commercial, research and evaluation use # under the terms of the LICENSE.md file. # # For inquiries contact george.drettakis@inria.fr # import torch import sys from datetime import datetime import numpy as np import random import os import cv2 def inverse_sigmoid(x): return torch.log(x/(1-x)) def PILtoTorch(pil_image, resolution): resized_image_PIL = pil_image.resize(resolution) resized_image = torch.from_numpy(np.array(resized_image_PIL)) / 255.0 if len(resized_image.shape) == 3: return resized_image.permute(2, 0, 1) else: return resized_image.unsqueeze(dim=-1).permute(2, 0, 1) def PIL2toTorch(pil_image, resolution): resized_image_PIL = pil_image.resize(resolution) resized_image = torch.from_numpy(np.array(resized_image_PIL)) / 255.0 * (2.0 ** 16 - 1.0) return resized_image def decode_op(optical_png): # use 'PIL Image.Open' to READ "Convert from .png (h, w, 3-rgb) -> (h,w,2)(flow_x, flow_y) .. float32 array" optical_png = optical_png[..., [2, 1, 0]] # bgr -> rgb h, w, _c = optical_png.shape assert optical_png.dtype == np.uint16 and _c == 3 "invalid flow flag: b == 0 for sky or other invalid flow" invalid_points = np.where(optical_png[..., 2] == 0) out_flow = torch.empty((h, w, 2)) decoded = 2.0 / (2**16 - 1.0) * optical_png.astype('f4') - 1 out_flow[..., 0] = torch.tensor(decoded[:, :, 0] * (w - 1)) # (pixel) delta_x : R out_flow[..., 1] = torch.tensor(decoded[:, :, 1] * (h - 1)) # delta_y : G out_flow[invalid_points[0], invalid_points[1], :] = 0 # B=0 for invalid flow return out_flow def get_expon_lr_func( lr_init, lr_final, lr_delay_steps=0, lr_delay_mult=1.0, max_steps=1000000 ): """ Copied from Plenoxels Continuous learning rate decay function. Adapted from JaxNeRF The returned rate is lr_init when step=0 and lr_final when step=max_steps, and is log-linearly interpolated elsewhere (equivalent to exponential decay). If lr_delay_steps>0 then the learning rate will be scaled by some smooth function of lr_delay_mult, such that the initial learning rate is lr_init*lr_delay_mult at the beginning of optimization but will be eased back to the normal learning rate when steps>lr_delay_steps. :param conf: config subtree 'lr' or similar :param max_steps: int, the number of steps during optimization. :return HoF which takes step as input """ def helper(step): if step < 0 or (lr_init == 0.0 and lr_final == 0.0): # Disable this parameter return 0.0 if lr_delay_steps > 0: # A kind of reverse cosine decay. delay_rate = lr_delay_mult + (1 - lr_delay_mult) * np.sin( 0.5 * np.pi * np.clip(step / lr_delay_steps, 0, 1) ) else: delay_rate = 1.0 t = np.clip(step / max_steps, 0, 1) log_lerp = np.exp(np.log(lr_init) * (1 - t) + np.log(lr_final) * t) return delay_rate * log_lerp return helper def strip_lowerdiag(L): uncertainty = torch.zeros((L.shape[0], 6), dtype=torch.float, device="cuda") uncertainty[:, 0] = L[:, 0, 0] uncertainty[:, 1] = L[:, 0, 1] uncertainty[:, 2] = L[:, 0, 2] uncertainty[:, 3] = L[:, 1, 1] uncertainty[:, 4] = L[:, 1, 2] uncertainty[:, 5] = L[:, 2, 2] return uncertainty def strip_symmetric(sym): return strip_lowerdiag(sym) def build_rotation(r): norm = torch.sqrt(r[:,0]*r[:,0] + r[:,1]*r[:,1] + r[:,2]*r[:,2] + r[:,3]*r[:,3]) q = r / norm[:, None] R = torch.zeros((q.size(0), 3, 3), device='cuda') r = q[:, 0] x = q[:, 1] y = q[:, 2] z = q[:, 3] R[:, 0, 0] = 1 - 2 * (y*y + z*z) R[:, 0, 1] = 2 * (x*y - r*z) R[:, 0, 2] = 2 * (x*z + r*y) R[:, 1, 0] = 2 * (x*y + r*z) R[:, 1, 1] = 1 - 2 * (x*x + z*z) R[:, 1, 2] = 2 * (y*z - r*x) R[:, 2, 0] = 2 * (x*z - r*y) R[:, 2, 1] = 2 * (y*z + r*x) R[:, 2, 2] = 1 - 2 * (x*x + y*y) return R def build_scaling_rotation(s, r): L = torch.zeros((s.shape[0], 3, 3), dtype=torch.float, device="cuda") R = build_rotation(r) L[:,0,0] = s[:,0] L[:,1,1] = s[:,1] L[:,2,2] = s[:,2] L = R @ L return L DEFAULT_RANDOM_SEED = 0 def seedBasic(seed=DEFAULT_RANDOM_SEED): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) def seedTorch(seed=DEFAULT_RANDOM_SEED): torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # basic + tensorflow + torch def seedEverything(seed=DEFAULT_RANDOM_SEED): seedBasic(seed) seedTorch(seed) def safe_state(silent): old_f = sys.stdout class F: def __init__(self, silent): self.silent = silent def write(self, x): if not self.silent: if x.endswith("\n"): old_f.write(x.replace("\n", " [{}]\n".format(str(datetime.now().strftime("%d/%m %H:%M:%S"))))) else: old_f.write(x) def flush(self): old_f.flush() sys.stdout = F(silent) random.seed(DEFAULT_RANDOM_SEED) np.random.seed(DEFAULT_RANDOM_SEED) torch.manual_seed(DEFAULT_RANDOM_SEED) torch.cuda.set_device(torch.device("cuda:0")) # sys.stdout = old_f