# 3D IoU caculate code for 3D object detection # Kent 2018/12 import numpy as np from scipy.spatial import ConvexHull from numpy import * def polygon_clip(subjectPolygon, clipPolygon): """ Clip a polygon with another polygon. Ref: https://rosettacode.org/wiki/Sutherland-Hodgman_polygon_clipping#Python Args: subjectPolygon: a list of (x,y) 2d points, any polygon. clipPolygon: a list of (x,y) 2d points, has to be *convex* Note: **points have to be counter-clockwise ordered** Return: a list of (x,y) vertex point for the intersection polygon. """ def inside(p): return(cp2[0]-cp1[0])*(p[1]-cp1[1]) > (cp2[1]-cp1[1])*(p[0]-cp1[0]) def computeIntersection(): dc = [ cp1[0] - cp2[0], cp1[1] - cp2[1] ] dp = [ s[0] - e[0], s[1] - e[1] ] n1 = cp1[0] * cp2[1] - cp1[1] * cp2[0] n2 = s[0] * e[1] - s[1] * e[0] n3 = 1.0 / (dc[0] * dp[1] - dc[1] * dp[0]) return [(n1*dp[0] - n2*dc[0]) * n3, (n1*dp[1] - n2*dc[1]) * n3] outputList = subjectPolygon cp1 = clipPolygon[-1] for clipVertex in clipPolygon: cp2 = clipVertex inputList = outputList outputList = [] s = inputList[-1] for subjectVertex in inputList: e = subjectVertex if inside(e): if not inside(s): outputList.append(computeIntersection()) outputList.append(e) elif inside(s): outputList.append(computeIntersection()) s = e cp1 = cp2 if len(outputList) == 0: return None return(outputList) def poly_area(x,y): """ Ref: http://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates """ return 0.5*np.abs(np.dot(x,np.roll(y,1))-np.dot(y,np.roll(x,1))) def convex_hull_intersection(p1, p2): """ Compute area of two convex hull's intersection area. p1,p2 are a list of (x,y) tuples of hull vertices. return a list of (x,y) for the intersection and its volume """ inter_p = polygon_clip(p1,p2) if inter_p is not None: hull_inter = ConvexHull(inter_p) return inter_p, hull_inter.volume else: return None, 0.0 def box3d_vol(corners): ''' corners: (8,3) no assumption on axis direction ''' a = np.sqrt(np.sum((corners[0,:] - corners[1,:])**2)) b = np.sqrt(np.sum((corners[1,:] - corners[2,:])**2)) c = np.sqrt(np.sum((corners[0,:] - corners[4,:])**2)) return a*b*c def is_clockwise(p): x = p[:,0] y = p[:,1] return np.dot(x,np.roll(y,1))-np.dot(y,np.roll(x,1)) > 0 def box3d_iou(corners1, corners2): ''' Compute 3D bounding box IoU. Input: corners1: numpy array (8,3), assume up direction is negative Y corners2: numpy array (8,3), assume up direction is negative Y Output: iou: 3D bounding box IoU iou_2d: bird's eye view 2D bounding box IoU todo (kent): add more description on corner points' orders. ''' # corner points are in counter clockwise order rect1 = [(corners1[i,0], corners1[i,2]) for i in [4,5,1,0]] rect2 = [(corners2[i,0], corners2[i,2]) for i in [4,5,1,0]] area1 = poly_area(np.array(rect1)[:,0], np.array(rect1)[:,1]) area2 = poly_area(np.array(rect2)[:,0], np.array(rect2)[:,1]) inter, inter_area = convex_hull_intersection(rect1, rect2) iou_2d = inter_area/(area1+area2-inter_area) # if iou_2d < 0: # print(inter_area, area1, area2) # ymax = min(corners1[0,1], corners2[0,1]) # ymin = max(corners1[4,1], corners2[4,1]) # inter_vol = inter_area * max(0.0, ymax-ymin) # vol1 = box3d_vol(corners1) # vol2 = box3d_vol(corners2) # iou = inter_vol / (vol1 + vol2 - inter_vol) # return iou, iou_2d return 0, iou_2d # ---------------------------------- # Helper functions for evaluation # ---------------------------------- def get_3d_box(box_size, heading_angle, center): ''' Calculate 3D bounding box corners from its parameterization. Input: box_size: tuple of (length,wide,height) heading_angle: rad scalar, clockwise from pos x axis center: tuple of (x,y,z) Output: corners_3d: numpy array of shape (8,3) for 3D box cornders ''' def roty(t): c = np.cos(t) s = np.sin(t) return np.array([[c, 0, s], [0, 1, 0], [-s, 0, c]]) R = roty(heading_angle) l,w,h = box_size x_corners = [l/2,l/2,-l/2,-l/2,l/2,l/2,-l/2,-l/2]; y_corners = [h/2,h/2,h/2,h/2,-h/2,-h/2,-h/2,-h/2]; z_corners = [w/2,-w/2,-w/2,w/2,w/2,-w/2,-w/2,w/2]; corners_3d = np.dot(R, np.vstack([x_corners,y_corners,z_corners])) corners_3d[0,:] = corners_3d[0,:] + center[0]; corners_3d[1,:] = corners_3d[1,:] + center[1]; corners_3d[2,:] = corners_3d[2,:] + center[2]; corners_3d = np.transpose(corners_3d) return corners_3d if __name__=='__main__': print('------------------') # get_3d_box(box_size, heading_angle, center) corners_3d_ground = get_3d_box((1.497255,1.644981, 3.628938), -1.531692, (2.882992 ,1.698800 ,20.785644)) corners_3d_predict = get_3d_box((1.458242, 1.604773, 3.707947), -1.549553, (2.756923, 1.661275, 20.943280 )) (IOU_3d,IOU_2d)=box3d_iou(corners_3d_predict,corners_3d_ground) print (IOU_3d,IOU_2d) #3d IoU/ 2d IoU of BEV(bird eye's view)