Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,540 Bytes
5cfeca6 4ae2215 d7f22c4 4ae2215 d7f22c4 89584a7 d7f22c4 4ae2215 d7f22c4 7619997 d7f22c4 4ae2215 d7f22c4 4ae2215 3011ece 4ae2215 d7f22c4 4ae2215 d7f22c4 7619997 4ae2215 d7f22c4 c508945 d7f22c4 7619997 d7f22c4 c508945 4ae2215 d7f22c4 4ae2215 d7f22c4 4ae2215 d7f22c4 4ae2215 d7f22c4 4ae2215 d7f22c4 4ae2215 d7f22c4 7619997 d7f22c4 4ae2215 d7f22c4 5cfeca6 7619997 d7f22c4 7bdf3c3 7619997 7bdf3c3 7619997 7bdf3c3 7619997 7bdf3c3 d7f22c4 c508945 d7f22c4 7619997 d7f22c4 7619997 4ae2215 7bdf3c3 d7f22c4 4ae2215 d7f22c4 7bdf3c3 d7f22c4 5cfeca6 7619997 5cfeca6 d7f22c4 4ae2215 7619997 7bdf3c3 4ae2215 c508945 d7f22c4 c508945 d7f22c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
"""
Modified From https://github.com/XXXXRT666/GPT-SoVITS
"""
import gc
import os
import time
import traceback
from typing import Dict, List, Tuple
import flash_attn # type: ignore
import torch
import torch.nn as nn
from tqdm import tqdm
from AR.models.embedding import (
SinePositionalEmbeddingNested as SinePositionalEmbedding,
)
from AR.models.embedding import TokenEmbedding
from AR.models.structs import T2SRequest, T2SResult, T2SSession
from AR.models.t2s_model_abc import (
AttentionABC,
CUDAGraphCacheABC,
FeedForward,
KVCacheABC,
KVCacheNHD,
T2SDecoderABC,
TorchProfiler,
TransformerBlockABC,
TransformerDecoderABC,
)
Tensor = torch.Tensor
class Attention(AttentionABC):
def __init__(self, n_head: int, hidden_dim: int):
super().__init__()
self.n_head = n_head
self.hidden_dim = hidden_dim
assert hidden_dim % n_head == 0
self.head_dim = hidden_dim // n_head
self.in_proj = nn.Linear(hidden_dim, hidden_dim * 3, bias=True)
self.out_proj = nn.Linear(hidden_dim, hidden_dim, bias=True)
def forward(self, x: Tensor, input_pos: Tensor, kv_cache: KVCacheABC, *args, **kwds) -> Tensor:
bsz, seqlen, _ = x.shape
q, k, v = self.in_proj.forward(x).chunk(3, dim=-1)
q = q.view(bsz, seqlen, self.n_head, self.head_dim)
k = k.view(bsz, seqlen, self.n_head, self.head_dim)
v = v.view(bsz, seqlen, self.n_head, self.head_dim)
attn: Tensor = flash_attn.flash_attn_with_kvcache(
q, kv_cache.k_cache, kv_cache.v_cache, k, v, cache_seqlens=input_pos - 1
) # type: ignore
attn = self.dropout.forward(attn)
attn = attn.view(bsz, seqlen, self.hidden_dim)
attn = self.out_proj.forward(attn)
return attn
class TransformerBlock(TransformerBlockABC):
def __init__(self, n_head, ffn_dim, hidden_dim) -> None:
super().__init__()
self.hidden_dim = hidden_dim
self.attention = Attention(n_head, hidden_dim)
self.feed_forward = FeedForward(hidden_dim, ffn_dim)
self.attention_norm = nn.LayerNorm([self.hidden_dim])
self.ffn_norm = nn.LayerNorm([self.hidden_dim])
class TransformerDecoder(TransformerDecoderABC):
def __init__(
self,
hidden_dim,
n_layer,
n_head,
ffn_dim,
vocab_size,
max_seq_length,
max_batch_size,
) -> None:
super().__init__()
self.hidden_dim = hidden_dim
self.n_head = n_head
assert hidden_dim % n_head == 0
self.head_dim = hidden_dim // n_head
self.vocab_size = vocab_size
self.n_layer = n_layer
self.layers = nn.ModuleList( # type: ignore
TransformerBlock(n_head, ffn_dim, hidden_dim) for _ in range(n_layer)
)
self.max_seq_length: int = max_seq_length
self.max_batch_size: int = max_batch_size
self.setup_caches(self.max_batch_size, self.max_seq_length)
def setup_caches(self, max_batch_size=10, max_seq_length=2500):
self.max_seq_length = max_seq_length
self.max_batch_size = max_batch_size
class T2SDecoder(T2SDecoderABC):
def __init__(
self,
config,
*args,
norm_first=False,
max_seq_length=2500,
max_batch_size=10,
**kwds,
) -> None:
assert torch.cuda.is_available()
super().__init__()
hidden_dim = config["model"]["hidden_dim"]
embedding_dim = config["model"]["embedding_dim"]
n_head = config["model"]["head"]
n_layer = config["model"]["n_layer"]
vocab_size = config["model"]["vocab_size"]
phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
p_dropout = config["model"]["dropout"]
EOS = config["model"]["EOS"]
ffn_dim = hidden_dim * 4
self.norm_first = norm_first
self.n_layer = n_layer
self.hidden_dim = hidden_dim
self.n_head = n_head
assert hidden_dim % n_head == 0
self.head_dim = hidden_dim // n_head
self.embedding_dim = embedding_dim
self.vocab_size = vocab_size
self.phoneme_vocab_size = phoneme_vocab_size
self.p_dropout = p_dropout
self.max_seq_length = max_seq_length
self.max_batch_size = max_batch_size
self.EOS = EOS
assert self.EOS == self.vocab_size - 1
self.bert_proj = nn.Linear(1024, self.embedding_dim)
self.ar_text_embedding = TokenEmbedding(self.embedding_dim, self.phoneme_vocab_size, self.p_dropout)
self.ar_text_position = SinePositionalEmbedding(
self.embedding_dim,
dropout=0.1,
scale=False,
alpha=True,
max_batch_size=max_batch_size,
max_seq_len=max_seq_length,
)
self.ar_audio_embedding = TokenEmbedding(self.embedding_dim, self.vocab_size, self.p_dropout)
self.ar_audio_position = SinePositionalEmbedding(
self.embedding_dim,
dropout=0.1,
scale=False,
alpha=True,
max_batch_size=max_batch_size,
max_seq_len=max_seq_length,
)
self.ar_predict_layer = nn.Linear(self.hidden_dim, self.vocab_size, bias=False)
self.h: TransformerDecoderABC = TransformerDecoder(
hidden_dim, n_layer, n_head, ffn_dim, vocab_size, max_seq_length, max_batch_size
)
self.kv_class = KVCacheNHD
self._register_load_state_dict_pre_hook(self.load_hook)
def embed(
self,
x: List[torch.Tensor],
y: torch.Tensor,
bert_features: List[torch.Tensor],
):
x_nested = torch.nested.nested_tensor(x)
assert x_nested.size(0) <= self.max_batch_size
bert_features_nested = torch.nested.nested_tensor(list(map(lambda x: x.transpose(0, 1), bert_features)))
x_emb = self.ar_text_embedding.forward(x_nested)
bert = self.bert_proj.forward(bert_features_nested)
x_emb = x_emb + bert
x_pos = self.ar_text_position.prefill(x_emb)
y_nested = torch.nested.nested_tensor(list(y.unbind(0)))
y_emb = self.ar_audio_embedding.forward(y_nested)
y_pos = self.ar_audio_position.prefill(y_emb)
xy_pos = torch.nested.nested_tensor([torch.cat([x_pos[i], y_pos[i]]) for i in range(len(x))])
return xy_pos
def post_forward(self, idx: int, session: T2SSession) -> None:
pass
def pre_forward(self, session: T2SSession) -> Tuple[List, Dict]:
return list(), dict()
class CUDAGraphCache(CUDAGraphCacheABC):
def __init__(
self,
decoder: T2SDecoderABC,
device: torch.device = torch.device("cpu"),
dtype: torch.dtype = torch.float32,
) -> None:
super().__init__(decoder, device, dtype)
def release_graph(self, session: T2SSession):
if session.id != self.id:
self.assigned = False
else:
del session.graph, session.xy_pos_, session.xy_dec_, session.input_pos, session.kv_cache
def get_cache_graph(self, session: T2SSession):
assert self.graph
session.graph = self.graph
session.xy_pos_ = self.xy_pos
session.xy_dec_ = self.xy_dec
session.input_pos = self.input_pos.copy_(session.input_pos)
for cache, cache_ in zip(self.kv_cache, session.kv_cache):
cache.sync_cache(cache_)
def capture_new_graph(self, session: T2SSession):
session.xy_pos_ = self.xy_pos.clone()
session.xy_dec_ = self.xy_dec.clone()
session.input_pos = self.input_pos.clone().copy_(session.input_pos)
args, kwds = self.decoder.pre_forward(session)
graph = self.decoder.capture(self.input_pos, self.xy_pos, self.xy_dec, kv_caches=self.kv_cache, *args, **kwds)
session.graph = graph
class CUDAGraphRunner:
def __init__(
self,
decoder_model: T2SDecoderABC,
device: torch.device = torch.device("cpu"),
dtype: torch.dtype = torch.float32,
) -> None:
assert device.type == "cuda"
self.device = device
self.dtype = dtype
self.decoder_model: T2SDecoderABC = decoder_model.to(self.device, self.dtype)
self.graphcache = CUDAGraphCache(decoder_model, device, dtype)
def _handle_request(self, request: T2SRequest):
with self.device:
decoder = self.decoder_model
session = T2SSession(decoder, request, device=self.device, dtype=self.dtype)
t1 = 0.0
infer_speed = 0.0
torch_profiler = TorchProfiler(request.debug)
with torch_profiler.profiler():
for idx in tqdm(range(1500)):
if idx == 0:
session.kv_cache = decoder.init_cache(session.bsz)
xy_dec = decoder.h.prefill(session.xy_pos, session.attn_mask_nested, session.kv_cache)
xy_dec = torch.stack([t[[-1]] for t in xy_dec.unbind()])
else:
if request.use_cuda_graph and session.graph is None and torch.cuda.is_available():
self.graphcache.assign_graph(session)
with torch_profiler.record("AR"):
if session.graph:
session.xy_pos_.copy_(session.xy_pos)
session.graph.replay()
xy_dec = session.xy_dec_.clone()
else:
args, kwds = decoder.pre_forward(session)
xy_dec = decoder.h.forward(
session.input_pos,
session.xy_pos,
session.kv_cache,
*args,
**kwds,
)
decoder.post_forward(idx, session)
logits = decoder.ar_predict_layer(xy_dec[:, -1])
session.input_pos.add_(1)
if idx == 0:
logits[:, -1] = float("-inf")
with torch_profiler.record("Sampling"):
samples = session.sampler.sample(
logits=logits,
previous_tokens=session.y,
top_k=request.top_k,
top_p=request.top_p,
repetition_penalty=request.repetition_penalty,
temperature=request.temperature,
)
session.y = torch.cat([session.y, samples], dim=1)
with torch_profiler.record("EOS"):
argmax_token = torch.argmax(logits, dim=-1)
sample_token = samples.squeeze(1)
EOS_mask = (argmax_token == decoder.EOS) | (sample_token == decoder.EOS)
newly_done_mask = EOS_mask & (~session.completed)
newly_done_indices = newly_done_mask.nonzero()
if newly_done_indices.numel() > 0:
session.y_results[newly_done_indices[0]] = session.y[
newly_done_indices[0], session.y_len : -1
].squeeze(0)
session.completed[newly_done_indices] = True
if torch.all(session.completed).item():
if session.y.size(1) == 0:
session.y = torch.cat([session.y, torch.zeros_like(samples)], dim=1)
tqdm.write("Bad Zero Prediction")
else:
tqdm.write(
f"T2S Decoding EOS {session.prefill_len.tolist().__str__().strip('[]')} -> \n{[i.size(0) for i in session.y_results].__str__().strip('[]')}"
)
tqdm.write(f"Infer Speed: {(idx - 1) / (time.perf_counter() - t1):.2f} token/s")
infer_speed = (idx - 1) / (time.perf_counter() - t1)
break
if (
request.early_stop_num != -1
and (session.y.size(1) - session.y_len) > request.early_stop_num
) or idx == 1499:
for i in range(session.bsz):
if not session.completed[i].item():
session.y_results[i] = session.y[i, session.y_len :]
session.completed[i] = True
break
with torch_profiler.record("NextPos"):
y_emb = decoder.ar_audio_embedding(session.y[:, -1:])
session.xy_pos = decoder.ar_audio_position.forward(session.input_pos - session.x_lens, y_emb)
if idx == 2:
torch_profiler.start()
t1 = time.perf_counter()
if idx == 51:
torch_profiler.end()
if idx % 100 == 0:
match session.device.type:
case "cuda":
torch.cuda.empty_cache()
case "mps":
torch.mps.empty_cache()
case "xpu":
torch.xpu.empty_cache()
case "mtia":
torch.mtia.empty_cache()
match session.device.type:
case "cuda":
torch.cuda.empty_cache()
case "mps":
torch.mps.empty_cache()
case "xpu":
torch.xpu.empty_cache()
case "mtia":
torch.mtia.empty_cache()
case "cpu":
gc.collect()
torch_profiler.end()
self.graphcache.release_graph(session)
return session.y_results[: request.valid_length], infer_speed
def generate(self, request: T2SRequest):
try:
result, infer_speed = self._handle_request(request)
t2s_result = T2SResult(result=result, infer_speed=infer_speed, status="Success")
except Exception as e:
t2s_result = T2SResult(status="Error", exception=e, traceback=traceback.format_exc())
return t2s_result
@staticmethod
def load_decoder(weights_path: os.PathLike, implement: str = "flash_attn"):
print(f"Loading Text2Semantic Weights from {weights_path} with {implement.replace('_', ' ').title()} Implement")
module_path = f"AR.models.t2s_model_{implement.lower()}"
cls_name = "T2SDecoder"
mod = __import__(module_path, fromlist=[cls_name])
decoder_cls: T2SDecoderABC = getattr(mod, cls_name)
dict_s1 = torch.load(weights_path, map_location="cpu", weights_only=False, mmap=True)
config = dict_s1["config"]
decoder: T2SDecoderABC = decoder_cls(config, max_batch_size=1)
state_dict = dict_s1["weight"]
decoder.load_state_dict(state_dict)
return decoder.eval()
|