Spaces:
Sleeping
Sleeping
File size: 15,024 Bytes
fdc673b 34c4a97 8d95e52 fdc673b 34c4a97 fdc673b 34c4a97 fdc673b 34c4a97 fdc673b 34c4a97 fdc673b 34c4a97 fdc673b 34c4a97 fdc673b 34c4a97 fdc673b 34c4a97 fdc673b 34c4a97 fdc673b 34c4a97 fdc673b 34c4a97 fdc673b 34c4a97 fdc673b 34c4a97 fdc673b 34c4a97 fdc673b 34c4a97 fdc673b 34c4a97 fdc673b 34c4a97 fdc673b 34c4a97 fdc673b 34c4a97 fdc673b 34c4a97 fdc673b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import torch, torchaudio, torchvision
import os
import gradio as gr
import numpy as np
import traceback
import spaces
from preprocess import process_audio_data, process_image_data
from train import WatermelonModel
from infer import infer
# Add HuggingFace Spaces GPU decorator
try:
use_gpu_decorator = True
print("\033[92mINFO\033[0m: HuggingFace Spaces GPU support detected")
except ImportError:
use_gpu_decorator = False
print("\033[93mWARNING\033[0m: HuggingFace Spaces GPU support not detected, running in standard mode")
# Global device variable
device = None
@spaces.GPU
def load_model(model_path):
global device
device = torch.device(
"cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
)
print(f"\033[92mINFO\033[0m: Using device: {device}")
# Check if the file exists
if not os.path.exists(model_path):
raise FileNotFoundError(f"Model file not found at {model_path}")
# Check if the file is empty or very small
file_size = os.path.getsize(model_path)
if file_size < 1000: # Less than 1KB is suspiciously small for a model
print(f"\033[93mWARNING\033[0m: Model file size is only {file_size} bytes, which is suspiciously small")
try:
model = WatermelonModel().to(device)
model.load_state_dict(torch.load(model_path, map_location=device))
model.eval()
print(f"\033[92mINFO\033[0m: Loaded model from {model_path}")
return model
except RuntimeError as e:
if "failed finding central directory" in str(e):
print(f"\033[91mERROR\033[0m: The model file at {model_path} appears to be corrupted.")
print("This can happen if:")
print(" 1. The model saving process was interrupted")
print(" 2. The file was not properly downloaded")
print(" 3. The path points to a file that is not a valid PyTorch model")
print(f"File size: {file_size} bytes")
raise
# Define the main prediction function
def predict_impl(audio, image, model):
try:
# Debug audio input
print(f"\033[92mDEBUG\033[0m: Audio input type: {type(audio)}")
print(f"\033[92mDEBUG\033[0m: Audio input value: {audio}")
# Handle different formats of audio input from Gradio
if audio is None:
return "Error: No audio provided. Please upload or record audio."
if isinstance(audio, tuple) and len(audio) >= 2:
sr, audio_data = audio[0], audio[-1]
print(f"\033[92mDEBUG\033[0m: Audio format: sr={sr}, audio_data shape={audio_data.shape if hasattr(audio_data, 'shape') else 'no shape'}")
elif isinstance(audio, tuple) and len(audio) == 1:
# Handle single element tuple
audio_data = audio[0]
sr = 44100 # Assume default sample rate
print(f"\033[92mDEBUG\033[0m: Single element audio tuple, using default sr={sr}")
elif isinstance(audio, np.ndarray):
# Handle direct numpy array
audio_data = audio
sr = 44100 # Assume default sample rate
print(f"\033[92mDEBUG\033[0m: Audio is numpy array, using default sr={sr}")
else:
return f"Error: Unexpected audio format: {type(audio)}"
# Ensure audio_data is correctly shaped
if isinstance(audio_data, np.ndarray):
# Make sure we have a 2D array
if len(audio_data.shape) == 1:
audio_data = np.expand_dims(audio_data, axis=0)
print(f"\033[92mDEBUG\033[0m: Reshaped 1D audio to 2D: {audio_data.shape}")
# If channels are the second dimension, transpose
if len(audio_data.shape) == 2 and audio_data.shape[0] > audio_data.shape[1]:
audio_data = np.transpose(audio_data)
print(f"\033[92mDEBUG\033[0m: Transposed audio shape to: {audio_data.shape}")
# Convert to tensor
audio_tensor = torch.tensor(audio_data).float()
print(f"\033[92mDEBUG\033[0m: Audio tensor shape: {audio_tensor.shape}")
# Process audio data and handle None case
mfcc = process_audio_data(audio_tensor, sr)
if mfcc is None:
return "Error: Failed to process audio data. Make sure your audio contains a clear tapping sound."
mfcc = mfcc.to(device)
print(f"\033[92mDEBUG\033[0m: MFCC shape: {mfcc.shape}")
# Debug image input
print(f"\033[92mDEBUG\033[0m: Image input type: {type(image)}")
print(f"\033[92mDEBUG\033[0m: Image shape: {image.shape if hasattr(image, 'shape') else 'No shape'}")
# Process image data and handle None case
if image is None:
return "Error: No image provided. Please upload an image."
# Handle different image formats
if isinstance(image, np.ndarray):
# Check if image is properly formatted (H, W, C) with 3 channels
if len(image.shape) == 3 and image.shape[2] == 3:
# Convert to tensor with shape (C, H, W) as expected by PyTorch
img = torch.tensor(image).float().permute(2, 0, 1)
print(f"\033[92mDEBUG\033[0m: Converted image to tensor with shape: {img.shape}")
elif len(image.shape) == 2:
# Grayscale image, expand to 3 channels
img = torch.tensor(image).float().unsqueeze(0).repeat(3, 1, 1)
print(f"\033[92mDEBUG\033[0m: Converted grayscale image to RGB tensor with shape: {img.shape}")
else:
return f"Error: Unexpected image shape: {image.shape}. Expected RGB or grayscale image."
else:
return f"Error: Unexpected image format: {type(image)}. Expected numpy array."
# Scale pixel values to [0, 1] if needed
if img.max() > 1.0:
img = img / 255.0
print(f"\033[92mDEBUG\033[0m: Scaled image pixel values to range [0, 1]")
# Get image dimensions and check if they're reasonable
print(f"\033[92mDEBUG\033[0m: Final image tensor shape before processing: {img.shape}")
# Process image
try:
img_processed = process_image_data(img)
if img_processed is None:
return "Error: Failed to process image data. Make sure your image clearly shows a watermelon."
img_processed = img_processed.to(device)
print(f"\033[92mDEBUG\033[0m: Processed image shape: {img_processed.shape}")
except Exception as e:
print(f"\033[91mERROR\033[0m: Image processing error: {str(e)}")
return f"Error in image processing: {str(e)}"
# Run inference
try:
# Based on the error, it seems infer() expects file paths, not tensors
# Let's create temporary files for the processed data
temp_dir = os.path.join(os.getcwd(), "temp")
os.makedirs(temp_dir, exist_ok=True)
# Save the audio to a temporary file if infer expects a file path
temp_audio_path = os.path.join(temp_dir, "temp_audio.wav")
if not isinstance(audio, str) and isinstance(audio, tuple) and len(audio) >= 2:
# If we have the original audio data and sample rate
audio_array = audio[-1]
sr = audio[0]
# Check if the audio array is valid
if audio_array.size == 0:
return "Error: Audio data is empty. Please record a longer audio clip."
# Get the duration of the audio
duration = audio_array.shape[-1] / sr
print(f"\033[92mDEBUG\033[0m: Audio duration: {duration:.2f} seconds")
# Check if we have at least 1 second of audio - but don't reject, just pad if needed
min_duration = 1.0 # minimum 1 second of audio
if duration < min_duration:
print(f"\033[93mWARNING\033[0m: Audio is shorter than {min_duration} seconds. Padding will be applied.")
# Calculate samples needed to reach minimum duration
samples_needed = int(min_duration * sr) - audio_array.shape[-1]
# Pad with zeros
padding = np.zeros((audio_array.shape[0], samples_needed), dtype=audio_array.dtype)
audio_array = np.concatenate([audio_array, padding], axis=1)
print(f"\033[92mDEBUG\033[0m: Padded audio to shape: {audio_array.shape}")
# Make sure audio has 2 dimensions
if len(audio_array.shape) == 1:
audio_array = np.expand_dims(audio_array, axis=0)
print(f"\033[92mDEBUG\033[0m: Audio array shape before saving: {audio_array.shape}, sr: {sr}")
# Make sure it's in the right format for torchaudio.save
audio_tensor = torch.tensor(audio_array).float()
if audio_tensor.dim() == 1:
audio_tensor = audio_tensor.unsqueeze(0)
torchaudio.save(temp_audio_path, audio_tensor, sr)
print(f"\033[92mDEBUG\033[0m: Saved temporary audio file to {temp_audio_path}")
# Let's also process the audio here to verify it works
test_mfcc = process_audio_data(audio_tensor, sr)
if test_mfcc is None:
return "Error: Unable to process the audio. Please try recording a different audio sample."
else:
print(f"\033[92mDEBUG\033[0m: Audio pre-check passed. MFCC shape: {test_mfcc.shape}")
audio_path = temp_audio_path
else:
# If we don't have a valid path, return an error
return "Error: Cannot process audio for inference. Invalid audio format."
# Save the image to a temporary file if infer expects a file path
temp_image_path = os.path.join(temp_dir, "temp_image.jpg")
if isinstance(image, np.ndarray):
import cv2
cv2.imwrite(temp_image_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
print(f"\033[92mDEBUG\033[0m: Saved temporary image file to {temp_image_path}")
image_path = temp_image_path
else:
# If we don't have a valid image, return an error
return "Error: Cannot process image for inference. Invalid image format."
# Create a modified version of infer that handles None returns
def safe_infer(audio_path, image_path, model, device):
try:
return infer(audio_path, image_path, model, device)
except Exception as e:
print(f"\033[91mERROR\033[0m: Error in infer function: {str(e)}")
# Try a more direct approach
try:
# Load audio and process
audio, sr = torchaudio.load(audio_path)
mfcc = process_audio_data(audio, sr)
if mfcc is None:
raise ValueError("Audio processing failed - MFCC is None")
mfcc = mfcc.to(device)
# Load image and process
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_tensor = torch.tensor(image).float().permute(2, 0, 1) / 255.0
img_processed = process_image_data(image_tensor)
if img_processed is None:
raise ValueError("Image processing failed - processed image is None")
img_processed = img_processed.to(device)
# Run model inference
with torch.no_grad():
prediction = model(mfcc, img_processed)
return prediction
except Exception as e2:
print(f"\033[91mERROR\033[0m: Fallback inference also failed: {str(e2)}")
raise
# Call our safer version
print(f"\033[92mDEBUG\033[0m: Calling safe_infer with audio_path={audio_path}, image_path={image_path}")
sweetness = safe_infer(audio_path, image_path, model, device)
if sweetness is None:
return "Error: The model was unable to make a prediction. Please try with different inputs."
print(f"\033[92mDEBUG\033[0m: Inference result: {sweetness.item()}")
return f"Predicted Sweetness: {sweetness.item():.2f}/10"
except Exception as e:
print(f"\033[91mERROR\033[0m: Inference failed: {str(e)}")
print(f"\033[91mTraceback\033[0m: {traceback.format_exc()}")
return f"Error during inference: {str(e)}"
except Exception as e:
print(f"\033[91mERROR\033[0m: Prediction failed: {str(e)}")
print(f"\033[91mTraceback\033[0m: {traceback.format_exc()}")
return f"Error processing input: {str(e)}"
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Watermelon sweetness predictor")
parser.add_argument("--model_path", type=str, default="./models/model_15_20250405-033557.pt", help="Path to the trained model")
args = parser.parse_args()
# Create wrapper function for Gradio that passes the model
@spaces.GPU
def predict(audio, image):
model = load_model(args.model_path)
return predict_impl(audio, image, model)
print("\033[92mINFO\033[0m: GPU acceleration enabled via @spaces.GPU decorator")
# Set up Gradio interface
audio_input = gr.Audio(label="Upload or Record Audio")
image_input = gr.Image(label="Upload or Capture Image")
output = gr.Textbox(label="Predicted Sweetness")
interface = gr.Interface(
fn=predict,
inputs=[audio_input, image_input],
outputs=output,
title="Watermelon Sweetness Predictor",
description="Upload an audio file and an image to predict the sweetness of a watermelon."
)
try:
interface.launch() # Launch the interface
except Exception as e:
print(f"\033[91mERROR\033[0m: Failed to launch interface: {e}")
print("\033[93mTIP\033[0m: If you're running in a remote environment or container, try setting additional parameters:")
print(" interface.launch(server_name='0.0.0.0', share=True)") |