Spaces:
Sleeping
Sleeping
File size: 16,456 Bytes
fdc673b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
import os
import time
import argparse
import torch
import torchaudio
import torchvision
from torch.utils.data import Dataset, DataLoader
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from efficient_model import MobileNetGRUModel, EfficientNetCNNModel, SqueezeNetTransformerModel
# Print library version information
print(f"\033[92mINFO\033[0m: PyTorch version: {torch.__version__}")
print(f"\033[92mINFO\033[0m: Torchaudio version: {torchaudio.__version__}")
print(f"\033[92mINFO\033[0m: Torchvision version: {torchvision.__version__}")
# Device selection
device = torch.device(
"cuda"
if torch.cuda.is_available()
else "mps" if torch.backends.mps.is_available() else "cpu"
)
print(f"\033[92mINFO\033[0m: Using device: {device}")
# Hyperparameters (using the best configuration from search)
batch_size = 4
epochs = 20
fc_hidden_size = 64
learning_rate = 0.0005
dropout_rate = 0.5
# Model save directory
os.makedirs("./models/", exist_ok=True)
class PreprocessedDataset(Dataset):
def __init__(self, data_dir):
self.data_dir = data_dir
self.samples = [
os.path.join(data_dir, f) for f in os.listdir(data_dir) if f.endswith(".pt")
]
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
sample_path = self.samples[idx]
mfcc, image, label = torch.load(sample_path)
return mfcc.float(), image.float(), label
def calculate_mae(outputs, labels):
"""Calculate Mean Absolute Error between outputs and labels"""
return torch.abs(outputs - labels).mean().item()
def evaluate_model(model, test_loader, criterion):
model.eval()
test_loss = 0.0
mae_sum = 0.0
all_predictions = []
all_labels = []
# For debugging
debug_samples = []
with torch.no_grad():
for mfcc, image, label in test_loader:
mfcc, image, label = mfcc.to(device), image.to(device), label.to(device)
output = model(mfcc, image)
label = label.view(-1, 1).float()
# Store debug samples (handling batch dimension properly)
if len(debug_samples) < 5:
# Extract individual samples from the batch
for i in range(min(len(output), 5 - len(debug_samples))):
debug_samples.append((output[i][0].item(), label[i][0].item()))
# Calculate MSE loss
loss = criterion(output, label)
test_loss += loss.item()
# Calculate MAE
mae = torch.abs(output - label).mean()
mae_sum += mae.item()
# Store predictions and labels for additional analysis
all_predictions.extend(output.cpu().numpy())
all_labels.extend(label.cpu().numpy())
avg_loss = test_loss / len(test_loader)
avg_mae = mae_sum / len(test_loader)
# Convert to numpy arrays for easier analysis
all_predictions = np.array(all_predictions).flatten()
all_labels = np.array(all_labels).flatten()
# Print debug samples
print("\nDEBUG SAMPLES (Prediction, Label):")
for i, (pred, label) in enumerate(debug_samples):
print(f"Sample {i+1}: Prediction = {pred:.4f}, Label = {label:.4f}, Difference = {abs(pred-label):.4f}")
return avg_loss, avg_mae, all_predictions, all_labels
def train_model(model_type):
try:
# Create model based on type
if model_type == "mobilenet_gru":
model = MobileNetGRUModel(
gru_hidden_size=32,
gru_layers=1,
fc_hidden_size=fc_hidden_size,
dropout_rate=dropout_rate
).to(device)
model_name = "MobileNetGRU"
elif model_type == "efficientnet_cnn":
model = EfficientNetCNNModel(
fc_hidden_size=fc_hidden_size,
dropout_rate=dropout_rate
).to(device)
model_name = "EfficientNetCNN"
elif model_type == "squeezenet_transformer":
model = SqueezeNetTransformerModel(
nhead=4,
dim_feedforward=128,
fc_hidden_size=fc_hidden_size,
dropout_rate=dropout_rate
).to(device)
model_name = "SqueezeNetTransformer"
else:
raise ValueError(f"Unknown model type: {model_type}")
# Data loading
data_dir = "./processed/"
dataset = PreprocessedDataset(data_dir)
n_samples = len(dataset)
# Check label range
all_labels = []
for i in range(min(10, len(dataset))):
_, _, label = dataset[i]
all_labels.append(label)
print("\nLABEL RANGE CHECK:")
print(f"Sample labels: {all_labels}")
print(f"Min label: {min(all_labels)}, Max label: {max(all_labels)}")
train_size = int(0.7 * n_samples)
val_size = int(0.2 * n_samples)
test_size = n_samples - train_size - val_size
train_dataset, val_dataset, test_dataset = torch.utils.data.random_split(
dataset, [train_size, val_size, test_size]
)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# Loss function and optimizer
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# TensorBoard
writer = SummaryWriter(f"runs/{model_name}/")
global_step = 0
print(f"\033[92mINFO\033[0m: Training {model_name} model for {epochs} epochs")
print(f"\033[92mINFO\033[0m: Training samples: {len(train_dataset)}")
print(f"\033[92mINFO\033[0m: Validation samples: {len(val_dataset)}")
print(f"\033[92mINFO\033[0m: Test samples: {len(test_dataset)}")
print(f"\033[92mINFO\033[0m: Batch size: {batch_size}")
print(f"\033[92mINFO\033[0m: Learning rate: {learning_rate}")
print(f"\033[92mINFO\033[0m: Dropout rate: {dropout_rate}")
best_val_loss = float('inf')
best_model_path = None
# Calculate model size
model_size = sum(p.numel() for p in model.parameters()) / 1e6 # in millions
print(f"\033[92mINFO\033[0m: Model parameters: {model_size:.2f}M")
# Training loop
for epoch in range(epochs):
print(f"\033[92mINFO\033[0m: Training epoch ({epoch+1}/{epochs})")
model.train()
running_loss = 0.0
running_mae = 0.0
n_batches = 0
start_time = time.time()
try:
for mfcc, image, label in train_loader:
mfcc, image, label = mfcc.to(device), image.to(device), label.to(device)
optimizer.zero_grad()
output = model(mfcc, image)
label = label.view(-1, 1).float()
loss = criterion(output, label)
loss.backward()
optimizer.step()
running_loss += loss.item()
running_mae += calculate_mae(output, label)
n_batches += 1
writer.add_scalar("Training/Loss", loss.item(), global_step)
writer.add_scalar("Training/MAE", calculate_mae(output, label), global_step)
global_step += 1
except Exception as e:
print(f"\033[91mERR!\033[0m: {e}")
epoch_time = time.time() - start_time
# Validation phase
model.eval()
val_loss = 0.0
val_mae = 0.0
val_batches = 0
with torch.no_grad():
try:
for mfcc, image, label in val_loader:
mfcc, image, label = (
mfcc.to(device),
image.to(device),
label.to(device),
)
output = model(mfcc, image)
label = label.view(-1, 1).float()
# Calculate loss
loss = criterion(output, label)
val_loss += loss.item()
# Calculate MAE
val_mae += calculate_mae(output, label)
val_batches += 1
except Exception as e:
print(f"\033[91mERR!\033[0m: {e}")
avg_train_loss = running_loss / n_batches
avg_train_mae = running_mae / n_batches
avg_val_loss = val_loss / val_batches
avg_val_mae = val_mae / val_batches
# Record validation metrics
writer.add_scalar("Validation/Loss", avg_val_loss, epoch)
writer.add_scalar("Validation/MAE", avg_val_mae, epoch)
print(
f"Epoch [{epoch+1}/{epochs}], Time: {epoch_time:.2f}s, "
f"Train Loss: {avg_train_loss:.4f}, Train MAE: {avg_train_mae:.4f}, "
f"Val Loss: {avg_val_loss:.4f}, Val MAE: {avg_val_mae:.4f}"
)
# Save model checkpoint
timestamp = time.strftime("%Y%m%d-%H%M%S")
model_path = f"models/{model_name}_model_{epoch+1}_{timestamp}.pt"
torch.save(model.state_dict(), model_path)
# Save the best model based on validation loss
if avg_val_loss < best_val_loss:
best_val_loss = avg_val_loss
best_model_path = model_path
print(f"\033[92mINFO\033[0m: New best model saved with validation loss: {best_val_loss:.4f}")
print(
f"\033[92mINFO\033[0m: Model checkpoint epoch [{epoch+1}/{epochs}] saved: {model_path}"
)
print(f"\033[92mINFO\033[0m: Training complete")
# Load the best model for testing
print(f"\033[92mINFO\033[0m: Loading best model from {best_model_path} for testing")
model.load_state_dict(torch.load(best_model_path))
# Evaluate on test set
test_loss, test_mae, predictions, labels = evaluate_model(model, test_loader, criterion)
# Calculate additional metrics
max_error = np.max(np.abs(predictions - labels))
min_error = np.min(np.abs(predictions - labels))
print("\n" + "="*50)
print(f"TEST RESULTS FOR {model_name}:")
print(f"Test Loss (MSE): {test_loss:.4f}")
print(f"Mean Absolute Error: {test_mae:.4f}")
print(f"Maximum Absolute Error: {max_error:.4f}")
print(f"Minimum Absolute Error: {min_error:.4f}")
# Add test results to TensorBoard
writer.add_scalar("Test/MSE", test_loss, 0)
writer.add_scalar("Test/MAE", test_mae, 0)
writer.add_scalar("Test/Max_Error", max_error, 0)
writer.add_scalar("Test/Min_Error", min_error, 0)
# Create a histogram of absolute errors
abs_errors = np.abs(predictions - labels)
writer.add_histogram("Test/Absolute_Errors", abs_errors, 0)
print("="*50)
# Final summary
print("\nTRAINING SUMMARY:")
print(f"Model: {model_name}")
print(f"Model Size: {model_size:.2f}M parameters")
print(f"Best Validation Loss: {best_val_loss:.4f}")
print(f"Final Test Loss: {test_loss:.4f}")
print(f"Final Test MAE: {test_mae:.4f}")
print(f"Best model saved at: {best_model_path}")
writer.close()
# Return metrics for comparison
return {
"model_name": model_name,
"model_size": model_size,
"val_loss": best_val_loss,
"test_loss": test_loss,
"test_mae": test_mae,
"model_path": best_model_path
}
except Exception as e:
print(f"\033[91mERR!\033[0m: Error training {model_type}: {e}")
# Return a placeholder result
return {
"model_name": model_type,
"model_size": 0,
"val_loss": float('inf'),
"test_loss": float('inf'),
"test_mae": float('inf'),
"model_path": None,
"error": str(e)
}
def test_cpu_inference(model_path, model_type):
"""Test CPU inference speed for the given model"""
# Create model based on type
if model_type == "mobilenet_gru":
model = MobileNetGRUModel(
gru_hidden_size=32,
gru_layers=1,
fc_hidden_size=fc_hidden_size,
dropout_rate=dropout_rate
)
model_name = "MobileNetGRU"
elif model_type == "efficientnet_cnn":
model = EfficientNetCNNModel(
fc_hidden_size=fc_hidden_size,
dropout_rate=dropout_rate
)
model_name = "EfficientNetCNN"
elif model_type == "squeezenet_transformer":
model = SqueezeNetTransformerModel(
nhead=4,
dim_feedforward=128,
fc_hidden_size=fc_hidden_size,
dropout_rate=dropout_rate
)
model_name = "SqueezeNetTransformer"
else:
raise ValueError(f"Unknown model type: {model_type}")
# Load model weights
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
model.eval()
# Create dummy input
dummy_mfcc = torch.randn(1, 10, 376) # Batch size 1, 10 time steps, 376 features
dummy_image = torch.randn(1, 3, 224, 224) # Batch size 1, 3 channels, 224x224 image
# Warm-up
for _ in range(10):
_ = model(dummy_mfcc, dummy_image)
# Measure inference time
num_runs = 100
start_time = time.time()
for _ in range(num_runs):
_ = model(dummy_mfcc, dummy_image)
end_time = time.time()
avg_time = (end_time - start_time) / num_runs
print(f"\n{model_name} CPU Inference Time:")
print(f"Average over {num_runs} runs: {avg_time*1000:.2f} ms")
return avg_time
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train and evaluate efficient models")
parser.add_argument(
"--model",
type=str,
choices=["mobilenet_gru", "efficientnet_cnn", "squeezenet_transformer", "all"],
default="all",
help="Model architecture to train"
)
args = parser.parse_args()
results = []
if args.model == "all":
# Train all models
for model_type in ["mobilenet_gru", "efficientnet_cnn", "squeezenet_transformer"]:
print(f"\n\n{'='*50}")
print(f"TRAINING {model_type.upper()}")
print(f"{'='*50}\n")
result = train_model(model_type)
results.append(result)
# Test CPU inference
inference_time = test_cpu_inference(result["model_path"], model_type)
result["inference_time"] = inference_time
else:
# Train specific model
result = train_model(args.model)
results.append(result)
# Test CPU inference
inference_time = test_cpu_inference(result["model_path"], args.model)
result["inference_time"] = inference_time
# Compare results
print("\n\n" + "="*80)
print("MODEL COMPARISON")
print("="*80)
print(f"{'Model':<25} {'Size (M)':<10} {'Val Loss':<10} {'Test Loss':<10} {'Test MAE':<10} {'CPU Time (ms)':<15}")
print("-"*80)
for result in results:
print(f"{result['model_name']:<25} {result['model_size']:<10.2f} {result['val_loss']:<10.4f} "
f"{result['test_loss']:<10.4f} {result['test_mae']:<10.4f} {result['inference_time']*1000:<15.2f}")
print("="*80)
# Find best model
best_model = min(results, key=lambda x: x["test_mae"])
print(f"\nBEST MODEL: {best_model['model_name']}")
print(f"Test MAE: {best_model['test_mae']:.4f}")
print(f"CPU Inference Time: {best_model['inference_time']*1000:.2f} ms")
print(f"Model Path: {best_model['model_path']}") |