watermelon / train_2.py
Xalphinions's picture
Upload folder using huggingface_hub
fdc673b verified
raw
history blame
16.5 kB
import os
import time
import argparse
import torch
import torchaudio
import torchvision
from torch.utils.data import Dataset, DataLoader
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from efficient_model import MobileNetGRUModel, EfficientNetCNNModel, SqueezeNetTransformerModel
# Print library version information
print(f"\033[92mINFO\033[0m: PyTorch version: {torch.__version__}")
print(f"\033[92mINFO\033[0m: Torchaudio version: {torchaudio.__version__}")
print(f"\033[92mINFO\033[0m: Torchvision version: {torchvision.__version__}")
# Device selection
device = torch.device(
"cuda"
if torch.cuda.is_available()
else "mps" if torch.backends.mps.is_available() else "cpu"
)
print(f"\033[92mINFO\033[0m: Using device: {device}")
# Hyperparameters (using the best configuration from search)
batch_size = 4
epochs = 20
fc_hidden_size = 64
learning_rate = 0.0005
dropout_rate = 0.5
# Model save directory
os.makedirs("./models/", exist_ok=True)
class PreprocessedDataset(Dataset):
def __init__(self, data_dir):
self.data_dir = data_dir
self.samples = [
os.path.join(data_dir, f) for f in os.listdir(data_dir) if f.endswith(".pt")
]
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
sample_path = self.samples[idx]
mfcc, image, label = torch.load(sample_path)
return mfcc.float(), image.float(), label
def calculate_mae(outputs, labels):
"""Calculate Mean Absolute Error between outputs and labels"""
return torch.abs(outputs - labels).mean().item()
def evaluate_model(model, test_loader, criterion):
model.eval()
test_loss = 0.0
mae_sum = 0.0
all_predictions = []
all_labels = []
# For debugging
debug_samples = []
with torch.no_grad():
for mfcc, image, label in test_loader:
mfcc, image, label = mfcc.to(device), image.to(device), label.to(device)
output = model(mfcc, image)
label = label.view(-1, 1).float()
# Store debug samples (handling batch dimension properly)
if len(debug_samples) < 5:
# Extract individual samples from the batch
for i in range(min(len(output), 5 - len(debug_samples))):
debug_samples.append((output[i][0].item(), label[i][0].item()))
# Calculate MSE loss
loss = criterion(output, label)
test_loss += loss.item()
# Calculate MAE
mae = torch.abs(output - label).mean()
mae_sum += mae.item()
# Store predictions and labels for additional analysis
all_predictions.extend(output.cpu().numpy())
all_labels.extend(label.cpu().numpy())
avg_loss = test_loss / len(test_loader)
avg_mae = mae_sum / len(test_loader)
# Convert to numpy arrays for easier analysis
all_predictions = np.array(all_predictions).flatten()
all_labels = np.array(all_labels).flatten()
# Print debug samples
print("\nDEBUG SAMPLES (Prediction, Label):")
for i, (pred, label) in enumerate(debug_samples):
print(f"Sample {i+1}: Prediction = {pred:.4f}, Label = {label:.4f}, Difference = {abs(pred-label):.4f}")
return avg_loss, avg_mae, all_predictions, all_labels
def train_model(model_type):
try:
# Create model based on type
if model_type == "mobilenet_gru":
model = MobileNetGRUModel(
gru_hidden_size=32,
gru_layers=1,
fc_hidden_size=fc_hidden_size,
dropout_rate=dropout_rate
).to(device)
model_name = "MobileNetGRU"
elif model_type == "efficientnet_cnn":
model = EfficientNetCNNModel(
fc_hidden_size=fc_hidden_size,
dropout_rate=dropout_rate
).to(device)
model_name = "EfficientNetCNN"
elif model_type == "squeezenet_transformer":
model = SqueezeNetTransformerModel(
nhead=4,
dim_feedforward=128,
fc_hidden_size=fc_hidden_size,
dropout_rate=dropout_rate
).to(device)
model_name = "SqueezeNetTransformer"
else:
raise ValueError(f"Unknown model type: {model_type}")
# Data loading
data_dir = "./processed/"
dataset = PreprocessedDataset(data_dir)
n_samples = len(dataset)
# Check label range
all_labels = []
for i in range(min(10, len(dataset))):
_, _, label = dataset[i]
all_labels.append(label)
print("\nLABEL RANGE CHECK:")
print(f"Sample labels: {all_labels}")
print(f"Min label: {min(all_labels)}, Max label: {max(all_labels)}")
train_size = int(0.7 * n_samples)
val_size = int(0.2 * n_samples)
test_size = n_samples - train_size - val_size
train_dataset, val_dataset, test_dataset = torch.utils.data.random_split(
dataset, [train_size, val_size, test_size]
)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# Loss function and optimizer
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# TensorBoard
writer = SummaryWriter(f"runs/{model_name}/")
global_step = 0
print(f"\033[92mINFO\033[0m: Training {model_name} model for {epochs} epochs")
print(f"\033[92mINFO\033[0m: Training samples: {len(train_dataset)}")
print(f"\033[92mINFO\033[0m: Validation samples: {len(val_dataset)}")
print(f"\033[92mINFO\033[0m: Test samples: {len(test_dataset)}")
print(f"\033[92mINFO\033[0m: Batch size: {batch_size}")
print(f"\033[92mINFO\033[0m: Learning rate: {learning_rate}")
print(f"\033[92mINFO\033[0m: Dropout rate: {dropout_rate}")
best_val_loss = float('inf')
best_model_path = None
# Calculate model size
model_size = sum(p.numel() for p in model.parameters()) / 1e6 # in millions
print(f"\033[92mINFO\033[0m: Model parameters: {model_size:.2f}M")
# Training loop
for epoch in range(epochs):
print(f"\033[92mINFO\033[0m: Training epoch ({epoch+1}/{epochs})")
model.train()
running_loss = 0.0
running_mae = 0.0
n_batches = 0
start_time = time.time()
try:
for mfcc, image, label in train_loader:
mfcc, image, label = mfcc.to(device), image.to(device), label.to(device)
optimizer.zero_grad()
output = model(mfcc, image)
label = label.view(-1, 1).float()
loss = criterion(output, label)
loss.backward()
optimizer.step()
running_loss += loss.item()
running_mae += calculate_mae(output, label)
n_batches += 1
writer.add_scalar("Training/Loss", loss.item(), global_step)
writer.add_scalar("Training/MAE", calculate_mae(output, label), global_step)
global_step += 1
except Exception as e:
print(f"\033[91mERR!\033[0m: {e}")
epoch_time = time.time() - start_time
# Validation phase
model.eval()
val_loss = 0.0
val_mae = 0.0
val_batches = 0
with torch.no_grad():
try:
for mfcc, image, label in val_loader:
mfcc, image, label = (
mfcc.to(device),
image.to(device),
label.to(device),
)
output = model(mfcc, image)
label = label.view(-1, 1).float()
# Calculate loss
loss = criterion(output, label)
val_loss += loss.item()
# Calculate MAE
val_mae += calculate_mae(output, label)
val_batches += 1
except Exception as e:
print(f"\033[91mERR!\033[0m: {e}")
avg_train_loss = running_loss / n_batches
avg_train_mae = running_mae / n_batches
avg_val_loss = val_loss / val_batches
avg_val_mae = val_mae / val_batches
# Record validation metrics
writer.add_scalar("Validation/Loss", avg_val_loss, epoch)
writer.add_scalar("Validation/MAE", avg_val_mae, epoch)
print(
f"Epoch [{epoch+1}/{epochs}], Time: {epoch_time:.2f}s, "
f"Train Loss: {avg_train_loss:.4f}, Train MAE: {avg_train_mae:.4f}, "
f"Val Loss: {avg_val_loss:.4f}, Val MAE: {avg_val_mae:.4f}"
)
# Save model checkpoint
timestamp = time.strftime("%Y%m%d-%H%M%S")
model_path = f"models/{model_name}_model_{epoch+1}_{timestamp}.pt"
torch.save(model.state_dict(), model_path)
# Save the best model based on validation loss
if avg_val_loss < best_val_loss:
best_val_loss = avg_val_loss
best_model_path = model_path
print(f"\033[92mINFO\033[0m: New best model saved with validation loss: {best_val_loss:.4f}")
print(
f"\033[92mINFO\033[0m: Model checkpoint epoch [{epoch+1}/{epochs}] saved: {model_path}"
)
print(f"\033[92mINFO\033[0m: Training complete")
# Load the best model for testing
print(f"\033[92mINFO\033[0m: Loading best model from {best_model_path} for testing")
model.load_state_dict(torch.load(best_model_path))
# Evaluate on test set
test_loss, test_mae, predictions, labels = evaluate_model(model, test_loader, criterion)
# Calculate additional metrics
max_error = np.max(np.abs(predictions - labels))
min_error = np.min(np.abs(predictions - labels))
print("\n" + "="*50)
print(f"TEST RESULTS FOR {model_name}:")
print(f"Test Loss (MSE): {test_loss:.4f}")
print(f"Mean Absolute Error: {test_mae:.4f}")
print(f"Maximum Absolute Error: {max_error:.4f}")
print(f"Minimum Absolute Error: {min_error:.4f}")
# Add test results to TensorBoard
writer.add_scalar("Test/MSE", test_loss, 0)
writer.add_scalar("Test/MAE", test_mae, 0)
writer.add_scalar("Test/Max_Error", max_error, 0)
writer.add_scalar("Test/Min_Error", min_error, 0)
# Create a histogram of absolute errors
abs_errors = np.abs(predictions - labels)
writer.add_histogram("Test/Absolute_Errors", abs_errors, 0)
print("="*50)
# Final summary
print("\nTRAINING SUMMARY:")
print(f"Model: {model_name}")
print(f"Model Size: {model_size:.2f}M parameters")
print(f"Best Validation Loss: {best_val_loss:.4f}")
print(f"Final Test Loss: {test_loss:.4f}")
print(f"Final Test MAE: {test_mae:.4f}")
print(f"Best model saved at: {best_model_path}")
writer.close()
# Return metrics for comparison
return {
"model_name": model_name,
"model_size": model_size,
"val_loss": best_val_loss,
"test_loss": test_loss,
"test_mae": test_mae,
"model_path": best_model_path
}
except Exception as e:
print(f"\033[91mERR!\033[0m: Error training {model_type}: {e}")
# Return a placeholder result
return {
"model_name": model_type,
"model_size": 0,
"val_loss": float('inf'),
"test_loss": float('inf'),
"test_mae": float('inf'),
"model_path": None,
"error": str(e)
}
def test_cpu_inference(model_path, model_type):
"""Test CPU inference speed for the given model"""
# Create model based on type
if model_type == "mobilenet_gru":
model = MobileNetGRUModel(
gru_hidden_size=32,
gru_layers=1,
fc_hidden_size=fc_hidden_size,
dropout_rate=dropout_rate
)
model_name = "MobileNetGRU"
elif model_type == "efficientnet_cnn":
model = EfficientNetCNNModel(
fc_hidden_size=fc_hidden_size,
dropout_rate=dropout_rate
)
model_name = "EfficientNetCNN"
elif model_type == "squeezenet_transformer":
model = SqueezeNetTransformerModel(
nhead=4,
dim_feedforward=128,
fc_hidden_size=fc_hidden_size,
dropout_rate=dropout_rate
)
model_name = "SqueezeNetTransformer"
else:
raise ValueError(f"Unknown model type: {model_type}")
# Load model weights
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
model.eval()
# Create dummy input
dummy_mfcc = torch.randn(1, 10, 376) # Batch size 1, 10 time steps, 376 features
dummy_image = torch.randn(1, 3, 224, 224) # Batch size 1, 3 channels, 224x224 image
# Warm-up
for _ in range(10):
_ = model(dummy_mfcc, dummy_image)
# Measure inference time
num_runs = 100
start_time = time.time()
for _ in range(num_runs):
_ = model(dummy_mfcc, dummy_image)
end_time = time.time()
avg_time = (end_time - start_time) / num_runs
print(f"\n{model_name} CPU Inference Time:")
print(f"Average over {num_runs} runs: {avg_time*1000:.2f} ms")
return avg_time
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train and evaluate efficient models")
parser.add_argument(
"--model",
type=str,
choices=["mobilenet_gru", "efficientnet_cnn", "squeezenet_transformer", "all"],
default="all",
help="Model architecture to train"
)
args = parser.parse_args()
results = []
if args.model == "all":
# Train all models
for model_type in ["mobilenet_gru", "efficientnet_cnn", "squeezenet_transformer"]:
print(f"\n\n{'='*50}")
print(f"TRAINING {model_type.upper()}")
print(f"{'='*50}\n")
result = train_model(model_type)
results.append(result)
# Test CPU inference
inference_time = test_cpu_inference(result["model_path"], model_type)
result["inference_time"] = inference_time
else:
# Train specific model
result = train_model(args.model)
results.append(result)
# Test CPU inference
inference_time = test_cpu_inference(result["model_path"], args.model)
result["inference_time"] = inference_time
# Compare results
print("\n\n" + "="*80)
print("MODEL COMPARISON")
print("="*80)
print(f"{'Model':<25} {'Size (M)':<10} {'Val Loss':<10} {'Test Loss':<10} {'Test MAE':<10} {'CPU Time (ms)':<15}")
print("-"*80)
for result in results:
print(f"{result['model_name']:<25} {result['model_size']:<10.2f} {result['val_loss']:<10.4f} "
f"{result['test_loss']:<10.4f} {result['test_mae']:<10.4f} {result['inference_time']*1000:<15.2f}")
print("="*80)
# Find best model
best_model = min(results, key=lambda x: x["test_mae"])
print(f"\nBEST MODEL: {best_model['model_name']}")
print(f"Test MAE: {best_model['test_mae']:.4f}")
print(f"CPU Inference Time: {best_model['inference_time']*1000:.2f} ms")
print(f"Model Path: {best_model['model_path']}")