Spaces:
Running
Running
| import glob | |
| import json | |
| import os | |
| from dataclasses import dataclass | |
| import numpy as np | |
| import dateutil | |
| import src.display.formatting as formatting | |
| import src.display.utils as utils | |
| import src.submission.check_validity as check_validity | |
| class EvalResult: | |
| eval_name: str # org_model_precision (uid) | |
| full_model: str # org/model (path on hub) | |
| org: str | |
| model: str | |
| revision: str # commit hash, "" if main | |
| results: dict | |
| precision: utils.Precision = utils.Precision.Unknown | |
| model_type: utils.ModelType = utils.ModelType.Unknown # Pretrained, fine tuned, ... | |
| weight_type: utils.WeightType = utils.WeightType.Original # Original or Adapter | |
| architecture: str = "Unknown" | |
| license: str = "?" | |
| likes: int = 0 | |
| num_params: int = 0 | |
| date: str = "" # submission date of request file | |
| still_on_hub: bool = False | |
| def init_from_json_file(self, json_filepath): | |
| """Inits the result from the specific model result file""" | |
| with open(json_filepath) as fp: | |
| data = json.load(fp) | |
| print('json_filepath',json_filepath) | |
| print(data) | |
| config = data.get("config") | |
| print(config) | |
| # Precision | |
| precision = utils.Precision.from_str(config.get("model_dtype")) | |
| # Get model and org | |
| full_model = config.get("model_name", config.get("model_args", None)) | |
| org, model = full_model.split("/", 1) if "/" in full_model else (None, full_model) | |
| if org: | |
| result_key = f"{org}_{model}_{precision.value.name}" | |
| else: | |
| result_key = f"{model}_{precision.value.name}" | |
| still_on_hub, _, model_config = check_validity.is_model_on_hub( | |
| full_model, config.get("model_sha", "main"), trust_remote_code=True, | |
| test_tokenizer=False) | |
| if model_config: | |
| architecture = ";".join(getattr(model_config, "architectures", ["?"])) | |
| else: | |
| architecture = "?" | |
| # Extract results available in this file (some results are split in several files) | |
| results = {} | |
| for task in utils.Tasks: | |
| #print(task) | |
| task = task.value | |
| #print(task.benchmark) | |
| #print(task.metric) | |
| #print(task.col_name) | |
| #print(task.value) | |
| if isinstance(task.metric, str): | |
| # accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if | |
| # task.benchmark == k and isinstance(v, dict)]) | |
| # accs = np.array([np.around(v*100, decimals=0) for k, v in data["results"].items() if task.benchmark == k]) | |
| accs = [] | |
| import math | |
| for k, v in data["results"].items(): | |
| if task.benchmark == k: | |
| if isinstance(v, (int, float)) and not math.isnan(v): | |
| accs.append(np.around(v * 100, decimals=1)) | |
| elif isinstance(v, list): | |
| accs.extend([np.around(x * 100, decimals=1) for x in v if | |
| isinstance(x, (int, float)) and not math.isnan(x)]) | |
| else: | |
| # 跳过 NaN 或不符合条件的值 | |
| accs.append(None) | |
| accs = np.array([x for x in accs if x is not None]) | |
| accs = accs[accs != None] | |
| results[task.benchmark] = accs | |
| elif isinstance(task.metric, list): | |
| accs = np.array([str(v.get(task.metric, None)) for k, v in data["results"].items() if | |
| task.benchmark == k and isinstance(v, dict)]) | |
| accs = accs[accs != None] | |
| results[task.benchmark] = accs | |
| else: | |
| print(f"Skipping task with unhandled metric type: {type(task.metric)}") | |
| # # We average all scores of a given metric (not all metrics are present in all files) | |
| # accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k]) | |
| # | |
| # results[task.benchmark] = accs | |
| return self( | |
| eval_name=result_key, | |
| full_model=full_model, | |
| org=org, | |
| model=model, | |
| results=results, | |
| precision=precision, | |
| revision= config.get("model_sha", ""), | |
| still_on_hub=still_on_hub, | |
| architecture=architecture | |
| ) | |
| def update_with_request_file(self, requests_path): | |
| """Finds the relevant request file for the current model and updates info with it""" | |
| all_files_before = os.listdir(requests_path) | |
| print("test the variable:", all_files_before) | |
| # print(self.full_model) | |
| #print(self.precision.value.name) | |
| request_file = get_request_file_for_model(requests_path, self.full_model) | |
| # print("file name:",request_file) | |
| #all_files = os.listdir(request_file) | |
| #print("Files in the folder:", all_files) | |
| try: | |
| with open(request_file, "r") as f: | |
| request = json.load(f) | |
| print(request) | |
| self.model_type = utils.ModelType.from_str(request.get("model_type", "")) | |
| #self.weight_type = utils.WeightType[request.get("weight_type", "Original")] | |
| self.license = request.get("license", "?") | |
| self.likes = request.get("likes", 0) | |
| self.num_params = int(float(request.get("params", "0").replace('B', ''))) | |
| self.date = request.get("submitted_time", "") | |
| # print(self.license) | |
| print('updated:', self) | |
| except FileNotFoundError: | |
| print(f"Could not find request file for {self.org}/{self.model}") | |
| except json.JSONDecodeError: | |
| print(f"Error decoding JSON in request file for {self.org}/{self.model}") | |
| def to_dict(self): | |
| """Converts the Eval Result to a dict compatible with our dataframe display""" | |
| data_dict = { | |
| "eval_name": self.eval_name, # not a column, just a save name, | |
| # utils.AutoEvalColumn.precision.name: self.precision.value.name, | |
| # utils.AutoEvalColumn.model_type.name: self.model_type.value.name, | |
| #utils.AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol, | |
| # utils.AutoEvalColumn.weight_type.name: self.weight_type.value.name, | |
| # utils.AutoEvalColumn.architecture.name: self.architecture, | |
| utils.AutoEvalColumn.model.name: formatting.make_clickable_model(self.full_model), | |
| utils.AutoEvalColumn.dummy.name: self.full_model, | |
| # utils.AutoEvalColumn.revision.name: self.revision, | |
| utils.AutoEvalColumn.license.name: self.license, | |
| utils.AutoEvalColumn.likes.name: self.likes, | |
| utils.AutoEvalColumn.params.name: self.num_params, | |
| # utils.AutoEvalColumn.still_on_hub.name: self.still_on_hub, | |
| } | |
| for task in utils.Tasks: | |
| data_dict[task.value.col_name] = self.results[task.value.benchmark] | |
| return data_dict | |
| def get_request_file_for_model(requests_path, model_name): | |
| """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED""" | |
| request_files = os.path.join( | |
| requests_path, | |
| f"{model_name}.json", | |
| ) | |
| #request_files = glob.glob(request_files) | |
| # Select correct request file (precision) | |
| # request_file = "" | |
| # request_files = sorted(request_files, reverse=True) | |
| # for tmp_request_file in request_files: | |
| # with open(tmp_request_file, "r") as f: | |
| # req_content = json.load(f) | |
| # # if ( | |
| # # req_content["status"] in ["FINISHED"] | |
| # # and req_content["precision"] == precision.split(".")[-1] | |
| # # ): | |
| # # request_file = tmp_request_file | |
| return request_files | |
| def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]: | |
| """From the path of the results folder root, extract all needed info for results""" | |
| model_result_filepaths = [] | |
| print("results_path", results_path) | |
| for root, _, files in os.walk(results_path): | |
| print("file",files) | |
| for f in files: | |
| if f.endswith(".json"): | |
| model_result_filepaths.extend([os.path.join(root, f)]) | |
| # print("model_result_filepaths:", model_result_filepaths) | |
| # exit() | |
| eval_results = {} | |
| for model_result_filepath in model_result_filepaths: | |
| # Creation of result | |
| eval_result = EvalResult.init_from_json_file(model_result_filepath) | |
| # print("request_path:",requests_path) | |
| eval_result.update_with_request_file(requests_path) | |
| # print(eval_result) | |
| # Store results of same eval together | |
| eval_name = eval_result.eval_name | |
| if eval_name in eval_results.keys(): | |
| eval_results[eval_name].results.update({k: v for k, v in | |
| eval_result.results.items() if v is not None}) | |
| else: | |
| eval_results[eval_name] = eval_result | |
| results = [] | |
| for v in eval_results.values(): | |
| try: | |
| v.to_dict() # we test if the dict version is complete | |
| results.append(v) | |
| except KeyError: # not all eval values present | |
| continue | |
| return results | |