Spaces:
Sleeping
Sleeping
Commit
·
2a968dc
1
Parent(s):
7d83c67
update scripts
Browse files- main_backend.py +106 -35
- src/backend/model_operations.py +48 -14
- src/leaderboard/read_evals.py +1 -0
main_backend.py
CHANGED
|
@@ -27,6 +27,85 @@ snapshot_download(repo_id=envs.QUEUE_REPO, revision="main",
|
|
| 27 |
local_dir=envs.EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
|
| 28 |
# exit()
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
def run_auto_eval(args):
|
| 31 |
if not args.reproduce:
|
| 32 |
current_pending_status = [PENDING_STATUS]
|
|
@@ -42,50 +121,43 @@ def run_auto_eval(args):
|
|
| 42 |
local_dir_results=envs.EVAL_RESULTS_PATH_BACKEND
|
| 43 |
)
|
| 44 |
logging.info("Checked completed evals")
|
| 45 |
-
eval_requests = manage_requests.get_eval_requests(
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
| 48 |
logging.info("Got eval requests")
|
| 49 |
eval_requests = sort_queue.sort_models_by_priority(api=envs.API, models=eval_requests)
|
| 50 |
logging.info("Sorted eval requests")
|
| 51 |
|
| 52 |
print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests")
|
| 53 |
-
print(eval_requests)
|
| 54 |
if len(eval_requests) == 0:
|
| 55 |
print("No eval requests found. Exiting.")
|
| 56 |
return
|
| 57 |
|
| 58 |
-
|
| 59 |
-
eval_request = manage_requests.EvalRequest(
|
| 60 |
-
model=args.model,
|
| 61 |
-
status=PENDING_STATUS,
|
| 62 |
-
precision=args.precision
|
| 63 |
-
)
|
| 64 |
-
pp.pprint(eval_request)
|
| 65 |
-
else:
|
| 66 |
-
eval_request = eval_requests[0]
|
| 67 |
pp.pprint(eval_request)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
# manage_requests.set_eval_request(
|
| 70 |
-
# api=envs.API,
|
| 71 |
-
# eval_request=eval_request,
|
| 72 |
-
# new_status=RUNNING_STATUS,
|
| 73 |
-
# hf_repo=envs.QUEUE_REPO,
|
| 74 |
-
# local_dir=envs.EVAL_REQUESTS_PATH_BACKEND
|
| 75 |
-
# )
|
| 76 |
-
# logging.info("Set eval request to running, now running eval")
|
| 77 |
-
|
| 78 |
-
run_eval_suite.run_evaluation(
|
| 79 |
-
eval_request=eval_request,
|
| 80 |
-
local_dir=envs.EVAL_RESULTS_PATH_BACKEND,
|
| 81 |
-
results_repo=envs.RESULTS_REPO,
|
| 82 |
-
batch_size=1,
|
| 83 |
-
device=envs.DEVICE,
|
| 84 |
-
no_cache=True,
|
| 85 |
-
need_check=not args.publish,
|
| 86 |
-
write_results=args.update
|
| 87 |
-
)
|
| 88 |
-
logging.info("Eval finished, now setting status to finished")
|
| 89 |
else:
|
| 90 |
eval_request = manage_requests.EvalRequest(
|
| 91 |
model=args.model,
|
|
@@ -106,7 +178,6 @@ def run_auto_eval(args):
|
|
| 106 |
)
|
| 107 |
logging.info("Reproducibility eval finished")
|
| 108 |
|
| 109 |
-
|
| 110 |
def main():
|
| 111 |
parser = argparse.ArgumentParser(description="Run auto evaluation with optional reproducibility feature")
|
| 112 |
|
|
@@ -114,7 +185,7 @@ def main():
|
|
| 114 |
parser.add_argument("--reproduce", type=bool, default=False, help="Reproduce the evaluation results")
|
| 115 |
parser.add_argument("--model", type=str, default=None, help="Your Model ID")
|
| 116 |
parser.add_argument("--precision", type=str, default="float16", help="Precision of your model")
|
| 117 |
-
parser.add_argument("--publish", type=bool, default=
|
| 118 |
parser.add_argument("--update", type=bool, default=False, help="whether to update google drive files")
|
| 119 |
|
| 120 |
args = parser.parse_args()
|
|
|
|
| 27 |
local_dir=envs.EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
|
| 28 |
# exit()
|
| 29 |
|
| 30 |
+
# def run_auto_eval(args):
|
| 31 |
+
# if not args.reproduce:
|
| 32 |
+
# current_pending_status = [PENDING_STATUS]
|
| 33 |
+
# print('_________________')
|
| 34 |
+
# manage_requests.check_completed_evals(
|
| 35 |
+
# api=envs.API,
|
| 36 |
+
# checked_status=RUNNING_STATUS,
|
| 37 |
+
# completed_status=FINISHED_STATUS,
|
| 38 |
+
# failed_status=FAILED_STATUS,
|
| 39 |
+
# hf_repo=envs.QUEUE_REPO,
|
| 40 |
+
# local_dir=envs.EVAL_REQUESTS_PATH_BACKEND,
|
| 41 |
+
# hf_repo_results=envs.RESULTS_REPO,
|
| 42 |
+
# local_dir_results=envs.EVAL_RESULTS_PATH_BACKEND
|
| 43 |
+
# )
|
| 44 |
+
# logging.info("Checked completed evals")
|
| 45 |
+
# eval_requests = manage_requests.get_eval_requests(job_status=current_pending_status,
|
| 46 |
+
# hf_repo=envs.QUEUE_REPO,
|
| 47 |
+
# local_dir=envs.EVAL_REQUESTS_PATH_BACKEND)
|
| 48 |
+
# logging.info("Got eval requests")
|
| 49 |
+
# eval_requests = sort_queue.sort_models_by_priority(api=envs.API, models=eval_requests)
|
| 50 |
+
# logging.info("Sorted eval requests")
|
| 51 |
+
#
|
| 52 |
+
# print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests")
|
| 53 |
+
# print(eval_requests)
|
| 54 |
+
# if len(eval_requests) == 0:
|
| 55 |
+
# print("No eval requests found. Exiting.")
|
| 56 |
+
# return
|
| 57 |
+
#
|
| 58 |
+
# if args.model is not None:
|
| 59 |
+
# eval_request = manage_requests.EvalRequest(
|
| 60 |
+
# model=args.model,
|
| 61 |
+
# status=PENDING_STATUS,
|
| 62 |
+
# precision=args.precision
|
| 63 |
+
# )
|
| 64 |
+
# pp.pprint(eval_request)
|
| 65 |
+
# else:
|
| 66 |
+
# eval_request = eval_requests[0]
|
| 67 |
+
# pp.pprint(eval_request)
|
| 68 |
+
#
|
| 69 |
+
# # manage_requests.set_eval_request(
|
| 70 |
+
# # api=envs.API,
|
| 71 |
+
# # eval_request=eval_request,
|
| 72 |
+
# # new_status=RUNNING_STATUS,
|
| 73 |
+
# # hf_repo=envs.QUEUE_REPO,
|
| 74 |
+
# # local_dir=envs.EVAL_REQUESTS_PATH_BACKEND
|
| 75 |
+
# # )
|
| 76 |
+
# # logging.info("Set eval request to running, now running eval")
|
| 77 |
+
#
|
| 78 |
+
# run_eval_suite.run_evaluation(
|
| 79 |
+
# eval_request=eval_request,
|
| 80 |
+
# local_dir=envs.EVAL_RESULTS_PATH_BACKEND,
|
| 81 |
+
# results_repo=envs.RESULTS_REPO,
|
| 82 |
+
# batch_size=1,
|
| 83 |
+
# device=envs.DEVICE,
|
| 84 |
+
# no_cache=True,
|
| 85 |
+
# need_check=not args.publish,
|
| 86 |
+
# write_results=args.update
|
| 87 |
+
# )
|
| 88 |
+
# logging.info("Eval finished, now setting status to finished")
|
| 89 |
+
# else:
|
| 90 |
+
# eval_request = manage_requests.EvalRequest(
|
| 91 |
+
# model=args.model,
|
| 92 |
+
# status=PENDING_STATUS,
|
| 93 |
+
# precision=args.precision
|
| 94 |
+
# )
|
| 95 |
+
# pp.pprint(eval_request)
|
| 96 |
+
# logging.info("Running reproducibility eval")
|
| 97 |
+
#
|
| 98 |
+
# run_eval_suite.run_evaluation(
|
| 99 |
+
# eval_request=eval_request,
|
| 100 |
+
# local_dir=envs.EVAL_RESULTS_PATH_BACKEND,
|
| 101 |
+
# results_repo=envs.RESULTS_REPO,
|
| 102 |
+
# batch_size=1,
|
| 103 |
+
# device=envs.DEVICE,
|
| 104 |
+
# need_check=not args.publish,
|
| 105 |
+
# write_results=args.update
|
| 106 |
+
# )
|
| 107 |
+
# logging.info("Reproducibility eval finished")
|
| 108 |
+
|
| 109 |
def run_auto_eval(args):
|
| 110 |
if not args.reproduce:
|
| 111 |
current_pending_status = [PENDING_STATUS]
|
|
|
|
| 121 |
local_dir_results=envs.EVAL_RESULTS_PATH_BACKEND
|
| 122 |
)
|
| 123 |
logging.info("Checked completed evals")
|
| 124 |
+
eval_requests = manage_requests.get_eval_requests(
|
| 125 |
+
job_status=current_pending_status,
|
| 126 |
+
hf_repo=envs.QUEUE_REPO,
|
| 127 |
+
local_dir=envs.EVAL_REQUESTS_PATH_BACKEND
|
| 128 |
+
)
|
| 129 |
logging.info("Got eval requests")
|
| 130 |
eval_requests = sort_queue.sort_models_by_priority(api=envs.API, models=eval_requests)
|
| 131 |
logging.info("Sorted eval requests")
|
| 132 |
|
| 133 |
print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests")
|
|
|
|
| 134 |
if len(eval_requests) == 0:
|
| 135 |
print("No eval requests found. Exiting.")
|
| 136 |
return
|
| 137 |
|
| 138 |
+
for eval_request in eval_requests:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
pp.pprint(eval_request)
|
| 140 |
+
run_eval_suite.run_evaluation(
|
| 141 |
+
eval_request=eval_request,
|
| 142 |
+
local_dir=envs.EVAL_RESULTS_PATH_BACKEND,
|
| 143 |
+
results_repo=envs.RESULTS_REPO,
|
| 144 |
+
batch_size=1,
|
| 145 |
+
device=envs.DEVICE,
|
| 146 |
+
no_cache=True,
|
| 147 |
+
need_check=not args.publish,
|
| 148 |
+
write_results=args.update
|
| 149 |
+
)
|
| 150 |
+
logging.info(f"Eval finished for model {eval_request.model}, now setting status to finished")
|
| 151 |
+
|
| 152 |
+
# Update the status to FINISHED
|
| 153 |
+
manage_requests.set_eval_request(
|
| 154 |
+
api=envs.API,
|
| 155 |
+
eval_request=eval_request,
|
| 156 |
+
new_status=FINISHED_STATUS,
|
| 157 |
+
hf_repo=envs.QUEUE_REPO,
|
| 158 |
+
local_dir=envs.EVAL_REQUESTS_PATH_BACKEND
|
| 159 |
+
)
|
| 160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
else:
|
| 162 |
eval_request = manage_requests.EvalRequest(
|
| 163 |
model=args.model,
|
|
|
|
| 178 |
)
|
| 179 |
logging.info("Reproducibility eval finished")
|
| 180 |
|
|
|
|
| 181 |
def main():
|
| 182 |
parser = argparse.ArgumentParser(description="Run auto evaluation with optional reproducibility feature")
|
| 183 |
|
|
|
|
| 185 |
parser.add_argument("--reproduce", type=bool, default=False, help="Reproduce the evaluation results")
|
| 186 |
parser.add_argument("--model", type=str, default=None, help="Your Model ID")
|
| 187 |
parser.add_argument("--precision", type=str, default="float16", help="Precision of your model")
|
| 188 |
+
parser.add_argument("--publish", type=bool, default=True, help="whether directly publish the evaluation results on HF")
|
| 189 |
parser.add_argument("--update", type=bool, default=False, help="whether to update google drive files")
|
| 190 |
|
| 191 |
args = parser.parse_args()
|
src/backend/model_operations.py
CHANGED
|
@@ -173,12 +173,12 @@ class SummaryGenerator:
|
|
| 173 |
# print(ID, q_ID, prompt_value)
|
| 174 |
system_prompt = envs.SYSTEM_PROMPT
|
| 175 |
_user_prompt = prompt_value
|
| 176 |
-
for ii in range(
|
| 177 |
# user_prompt = f"{envs.USER_PROMPT}\nPassage:\n{_source}"
|
| 178 |
while True:
|
| 179 |
try:
|
| 180 |
'''调用'''
|
| 181 |
-
print('
|
| 182 |
|
| 183 |
_response = self.generate_summary(system_prompt, _user_prompt)
|
| 184 |
# print(f"Finish index {index}")
|
|
@@ -204,18 +204,46 @@ class SummaryGenerator:
|
|
| 204 |
break
|
| 205 |
if i == 5:
|
| 206 |
print(_response)
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
|
|
|
|
|
|
|
|
|
| 210 |
try:
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
|
|
|
|
|
|
|
|
|
| 217 |
else:
|
| 218 |
-
_response1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
|
| 220 |
Experiment_ID.append(ID)
|
| 221 |
Questions_ID.append(q_column[j])
|
|
@@ -421,10 +449,16 @@ class SummaryGenerator:
|
|
| 421 |
# print(result)
|
| 422 |
from huggingface_hub import InferenceClient
|
| 423 |
|
| 424 |
-
client = InferenceClient(self.model_id,api_key=envs.TOKEN)
|
| 425 |
messages = [{"role": "system", "content": system_prompt},{"role": "user", "content": user_prompt}]
|
| 426 |
outputs = client.chat_completion(messages, max_tokens=50)
|
| 427 |
-
result =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 428 |
|
| 429 |
return result
|
| 430 |
# exit()
|
|
|
|
| 173 |
# print(ID, q_ID, prompt_value)
|
| 174 |
system_prompt = envs.SYSTEM_PROMPT
|
| 175 |
_user_prompt = prompt_value
|
| 176 |
+
for ii in range(2):
|
| 177 |
# user_prompt = f"{envs.USER_PROMPT}\nPassage:\n{_source}"
|
| 178 |
while True:
|
| 179 |
try:
|
| 180 |
'''调用'''
|
| 181 |
+
print(ID,'-',ii)
|
| 182 |
|
| 183 |
_response = self.generate_summary(system_prompt, _user_prompt)
|
| 184 |
# print(f"Finish index {index}")
|
|
|
|
| 204 |
break
|
| 205 |
if i == 5:
|
| 206 |
print(_response)
|
| 207 |
+
|
| 208 |
+
def extract_responses(text, trigger_words=None):
|
| 209 |
+
if trigger_words is None:
|
| 210 |
+
# 如果没有提供特定的触发词列表,则使用默认值
|
| 211 |
+
trigger_words = ["sure", "okay", "yes"]
|
| 212 |
+
|
| 213 |
try:
|
| 214 |
+
sentences = text.split('\n')
|
| 215 |
+
|
| 216 |
+
sentences = [sentence.strip() for sentence in sentences if sentence.strip()]
|
| 217 |
+
|
| 218 |
+
sentences = [sentence.split(':', 1)[-1].strip() if ':' in sentence else sentence for
|
| 219 |
+
sentence in sentences]
|
| 220 |
+
if any(sentences[0].lower().startswith(word) for word in trigger_words):
|
| 221 |
+
_response1 = sentences[1].strip() if len(sentences) > 1 else None
|
| 222 |
+
_response2 = sentences[2].strip() if len(sentences) > 2 else None
|
| 223 |
else:
|
| 224 |
+
_response1 = sentences[0].strip() if len(sentences) > 0 else None
|
| 225 |
+
_response2 = sentences[1].strip() if len(sentences) > 1 else None
|
| 226 |
+
|
| 227 |
+
except Exception as e:
|
| 228 |
+
print(f"Error occurred: {e}")
|
| 229 |
+
_response1, _response2 = None, None
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
return _response1, _response2
|
| 233 |
+
|
| 234 |
+
_response1, _response2 = extract_responses(_response)
|
| 235 |
+
# if _response == None:
|
| 236 |
+
# _response1, _response2 = "", ""
|
| 237 |
+
# else:
|
| 238 |
+
# try:
|
| 239 |
+
# import re
|
| 240 |
+
# _response1,_response2 = re.split(r'\n\s*\n', _response.strip())
|
| 241 |
+
# except:
|
| 242 |
+
# _response1 = _response.split('\n\n')
|
| 243 |
+
# if len(_response) == 2:
|
| 244 |
+
# _response1, _response2 = _response[0], _response[1]
|
| 245 |
+
# else:
|
| 246 |
+
# _response1, _response2 = _response[0], ""
|
| 247 |
|
| 248 |
Experiment_ID.append(ID)
|
| 249 |
Questions_ID.append(q_column[j])
|
|
|
|
| 449 |
# print(result)
|
| 450 |
from huggingface_hub import InferenceClient
|
| 451 |
|
| 452 |
+
client = InferenceClient(self.model_id,api_key=envs.TOKEN,headers={"X-use-cache": "false"})
|
| 453 |
messages = [{"role": "system", "content": system_prompt},{"role": "user", "content": user_prompt}]
|
| 454 |
outputs = client.chat_completion(messages, max_tokens=50)
|
| 455 |
+
result = None
|
| 456 |
+
while result is None:
|
| 457 |
+
outputs = client.chat_completion(messages, max_tokens=50)
|
| 458 |
+
result = outputs['choices'][0]['message']['content']
|
| 459 |
+
|
| 460 |
+
if result is None:
|
| 461 |
+
time.sleep(1) # Optional: Add a small delay before retrying
|
| 462 |
|
| 463 |
return result
|
| 464 |
# exit()
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -173,6 +173,7 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
|
|
| 173 |
for model_result_filepath in model_result_filepaths:
|
| 174 |
# Creation of result
|
| 175 |
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
|
|
|
| 176 |
eval_result.update_with_request_file(requests_path)
|
| 177 |
|
| 178 |
# Store results of same eval together
|
|
|
|
| 173 |
for model_result_filepath in model_result_filepaths:
|
| 174 |
# Creation of result
|
| 175 |
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
| 176 |
+
print("request_path:",requests_path)
|
| 177 |
eval_result.update_with_request_file(requests_path)
|
| 178 |
|
| 179 |
# Store results of same eval together
|