Spaces:
Sleeping
Sleeping
Commit
·
ec7c10d
1
Parent(s):
c150b24
update scripts
Browse files- app.py +188 -245
- src/backend/model_operations.py +36 -10
app.py
CHANGED
|
@@ -51,41 +51,7 @@ original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_d
|
|
| 51 |
leaderboard_df = original_df.copy()
|
| 52 |
|
| 53 |
def process_pending_evals():
|
| 54 |
-
|
| 55 |
-
# print("No pending evaluations found.")
|
| 56 |
-
# return
|
| 57 |
-
#
|
| 58 |
-
# for _, eval_request in pending_eval_queue_df.iterrows():
|
| 59 |
-
# import re
|
| 60 |
-
# model_link = eval_request['model']
|
| 61 |
-
# match = re.search(r'>([^<]+)<', model_link)
|
| 62 |
-
# if match:
|
| 63 |
-
# eval_request['model'] = match.group(1) # 赋值给 eval_request['model']
|
| 64 |
-
# else:
|
| 65 |
-
# eval_request['model'] = model_link # 如果无法匹配,保留原始字符串
|
| 66 |
-
#
|
| 67 |
-
# print(f"Evaluating model: {eval_request['model']}")
|
| 68 |
-
#
|
| 69 |
-
# # 调用评估函数
|
| 70 |
-
# run_eval_suite.run_evaluation(
|
| 71 |
-
# eval_request=eval_request,
|
| 72 |
-
# local_dir=envs.EVAL_RESULTS_PATH_BACKEND,
|
| 73 |
-
# results_repo=envs.RESULTS_REPO,
|
| 74 |
-
# batch_size=1,
|
| 75 |
-
# device=envs.DEVICE,
|
| 76 |
-
# no_cache=True,
|
| 77 |
-
# need_check=False, # 根据需要设定是否需要检查
|
| 78 |
-
# write_results=False # 根据需要设定是否写入结果
|
| 79 |
-
# )
|
| 80 |
-
# print(f"Finished evaluation for model: {eval_request['model']}")
|
| 81 |
-
# # Update the status to FINISHED
|
| 82 |
-
# manage_requests.set_eval_request(
|
| 83 |
-
# api=envs.API,
|
| 84 |
-
# eval_request=eval_request,
|
| 85 |
-
# new_status="FINISHED",
|
| 86 |
-
# hf_repo=envs.QUEUE_REPO,
|
| 87 |
-
# local_dir=envs.EVAL_REQUESTS_PATH_BACKEND
|
| 88 |
-
# )
|
| 89 |
current_pending_status = [PENDING_STATUS]
|
| 90 |
print('_________________')
|
| 91 |
manage_requests.check_completed_evals(
|
|
@@ -246,103 +212,88 @@ def filter_models(
|
|
| 246 |
|
| 247 |
return filtered_df
|
| 248 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
|
| 250 |
-
|
| 251 |
-
with
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
interactive=True,
|
|
|
|
| 280 |
)
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
|
|
|
|
|
|
|
|
|
| 284 |
)
|
| 285 |
-
with gr.Column(min_width=320):
|
| 286 |
-
#with gr.Box(elem_id="box-filter"):
|
| 287 |
-
# filter_columns_type = gr.CheckboxGroup(
|
| 288 |
-
# label="Model types",
|
| 289 |
-
# choices=[t.to_str() for t in utils.ModelType],
|
| 290 |
-
# value=[t.to_str() for t in utils.ModelType],
|
| 291 |
-
# interactive=True,
|
| 292 |
-
# elem_id="filter-columns-type",
|
| 293 |
-
# )
|
| 294 |
-
filter_columns_precision = gr.CheckboxGroup(
|
| 295 |
-
label="Precision",
|
| 296 |
-
choices=[i.value.name for i in utils.Precision],
|
| 297 |
-
value=[i.value.name for i in utils.Precision],
|
| 298 |
-
interactive=True,
|
| 299 |
-
elem_id="filter-columns-precision",
|
| 300 |
-
)
|
| 301 |
-
filter_columns_size = gr.CheckboxGroup(
|
| 302 |
-
label="Model sizes (in billions of parameters)",
|
| 303 |
-
choices=list(utils.NUMERIC_INTERVALS.keys()),
|
| 304 |
-
value=list(utils.NUMERIC_INTERVALS.keys()),
|
| 305 |
-
interactive=True,
|
| 306 |
-
elem_id="filter-columns-size",
|
| 307 |
-
)
|
| 308 |
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
update_table,
|
| 332 |
-
[
|
| 333 |
-
hidden_leaderboard_table_for_search,
|
| 334 |
-
shown_columns,
|
| 335 |
-
#filter_columns_type,
|
| 336 |
-
filter_columns_precision,
|
| 337 |
-
filter_columns_size,
|
| 338 |
-
deleted_models_visibility,
|
| 339 |
-
search_bar,
|
| 340 |
-
],
|
| 341 |
-
leaderboard_table,
|
| 342 |
-
)
|
| 343 |
-
# for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility]:
|
| 344 |
-
for selector in [shown_columns, filter_columns_precision, filter_columns_size, deleted_models_visibility]:
|
| 345 |
-
selector.change(
|
| 346 |
update_table,
|
| 347 |
[
|
| 348 |
hidden_leaderboard_table_for_search,
|
|
@@ -354,133 +305,125 @@ with demo:
|
|
| 354 |
search_bar,
|
| 355 |
],
|
| 356 |
leaderboard_table,
|
| 357 |
-
queue=True,
|
| 358 |
)
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
finished_eval_table = gr.components.Dataframe(
|
| 375 |
-
value=finished_eval_queue_df,
|
| 376 |
-
headers=utils.EVAL_COLS,
|
| 377 |
-
datatype=utils.EVAL_TYPES,
|
| 378 |
-
row_count=5,
|
| 379 |
-
)
|
| 380 |
-
with gr.Accordion(
|
| 381 |
-
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
| 382 |
-
open=False,
|
| 383 |
-
):
|
| 384 |
-
with gr.Row():
|
| 385 |
-
running_eval_table = gr.components.Dataframe(
|
| 386 |
-
value=running_eval_queue_df,
|
| 387 |
-
headers=utils.EVAL_COLS,
|
| 388 |
-
datatype=utils.EVAL_TYPES,
|
| 389 |
-
row_count=5,
|
| 390 |
-
)
|
| 391 |
-
|
| 392 |
-
with gr.Accordion(
|
| 393 |
-
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
| 394 |
-
open=False,
|
| 395 |
-
):
|
| 396 |
-
with gr.Row():
|
| 397 |
-
pending_eval_table = gr.components.Dataframe(
|
| 398 |
-
value=pending_eval_queue_df,
|
| 399 |
-
headers=utils.EVAL_COLS,
|
| 400 |
-
datatype=utils.EVAL_TYPES,
|
| 401 |
-
row_count=5,
|
| 402 |
-
)
|
| 403 |
-
with gr.Row():
|
| 404 |
-
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
| 405 |
-
|
| 406 |
-
with gr.Row():
|
| 407 |
-
with gr.Column():
|
| 408 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
| 409 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
| 410 |
-
model_type = gr.Dropdown(
|
| 411 |
-
choices=[t.to_str(" : ") for t in utils.ModelType if t != utils.ModelType.Unknown],
|
| 412 |
-
label="Model type",
|
| 413 |
-
multiselect=False,
|
| 414 |
-
value=None,
|
| 415 |
-
interactive=True,
|
| 416 |
-
)
|
| 417 |
-
|
| 418 |
-
with gr.Column():
|
| 419 |
-
precision = gr.Dropdown(
|
| 420 |
-
choices=[i.value.name for i in utils.Precision if i != utils.Precision.Unknown],
|
| 421 |
-
label="Precision",
|
| 422 |
-
multiselect=False,
|
| 423 |
-
value="float16",
|
| 424 |
-
interactive=True,
|
| 425 |
)
|
| 426 |
-
weight_type = gr.Dropdown(
|
| 427 |
-
choices=[i.value.name for i in utils.WeightType],
|
| 428 |
-
label="Weights type",
|
| 429 |
-
multiselect=False,
|
| 430 |
-
value="Original",
|
| 431 |
-
interactive=True,
|
| 432 |
-
)
|
| 433 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
| 434 |
-
|
| 435 |
-
submit_button = gr.Button("Submit Eval")
|
| 436 |
-
submission_result = gr.Markdown()
|
| 437 |
-
submit_button.click(
|
| 438 |
-
submit.add_new_eval,
|
| 439 |
-
[
|
| 440 |
-
model_name_textbox,
|
| 441 |
-
base_model_name_textbox,
|
| 442 |
-
revision_name_textbox,
|
| 443 |
-
precision,
|
| 444 |
-
weight_type,
|
| 445 |
-
model_type,
|
| 446 |
-
],
|
| 447 |
-
submission_result,
|
| 448 |
-
)
|
| 449 |
-
|
| 450 |
-
with gr.Row():
|
| 451 |
-
with gr.Accordion("📙 Citation", open=False):
|
| 452 |
-
citation_button = gr.Textbox(
|
| 453 |
-
value=about.CITATION_BUTTON_TEXT,
|
| 454 |
-
label=about.CITATION_BUTTON_LABEL,
|
| 455 |
-
lines=20,
|
| 456 |
-
elem_id="citation-button",
|
| 457 |
-
show_copy_button=True,
|
| 458 |
-
)
|
| 459 |
-
|
| 460 |
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
# process_pending_evals()
|
| 464 |
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 479 |
|
| 480 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 481 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 482 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 483 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 484 |
|
| 485 |
(
|
| 486 |
finished_eval_queue_df,
|
|
|
|
| 51 |
leaderboard_df = original_df.copy()
|
| 52 |
|
| 53 |
def process_pending_evals():
|
| 54 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
current_pending_status = [PENDING_STATUS]
|
| 56 |
print('_________________')
|
| 57 |
manage_requests.check_completed_evals(
|
|
|
|
| 212 |
|
| 213 |
return filtered_df
|
| 214 |
|
| 215 |
+
try:
|
| 216 |
+
demo = gr.Blocks(css=custom_css)
|
| 217 |
+
with demo:
|
| 218 |
+
gr.HTML(about.TITLE)
|
| 219 |
+
gr.Markdown(about.INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 220 |
|
| 221 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 222 |
+
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
| 223 |
+
with gr.Row():
|
| 224 |
+
with gr.Column():
|
| 225 |
+
with gr.Row():
|
| 226 |
+
search_bar = gr.Textbox(
|
| 227 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
| 228 |
+
show_label=False,
|
| 229 |
+
elem_id="search-bar",
|
| 230 |
+
)
|
| 231 |
+
with gr.Row():
|
| 232 |
+
shown_columns = gr.CheckboxGroup(
|
| 233 |
+
choices=[
|
| 234 |
+
c.name
|
| 235 |
+
for c in utils.fields(utils.AutoEvalColumn)
|
| 236 |
+
if not c.hidden and not c.never_hidden and not c.dummy
|
| 237 |
+
],
|
| 238 |
+
value=[
|
| 239 |
+
c.name
|
| 240 |
+
for c in utils.fields(utils.AutoEvalColumn)
|
| 241 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
| 242 |
+
],
|
| 243 |
+
label="Select columns to show",
|
| 244 |
+
elem_id="column-select",
|
| 245 |
+
interactive=True,
|
| 246 |
+
)
|
| 247 |
+
with gr.Row():
|
| 248 |
+
deleted_models_visibility = gr.Checkbox(
|
| 249 |
+
value=False, label="Show gated/private/deleted models", interactive=True
|
| 250 |
+
)
|
| 251 |
+
with gr.Column(min_width=320):
|
| 252 |
+
#with gr.Box(elem_id="box-filter"):
|
| 253 |
+
# filter_columns_type = gr.CheckboxGroup(
|
| 254 |
+
# label="Model types",
|
| 255 |
+
# choices=[t.to_str() for t in utils.ModelType],
|
| 256 |
+
# value=[t.to_str() for t in utils.ModelType],
|
| 257 |
+
# interactive=True,
|
| 258 |
+
# elem_id="filter-columns-type",
|
| 259 |
+
# )
|
| 260 |
+
filter_columns_precision = gr.CheckboxGroup(
|
| 261 |
+
label="Precision",
|
| 262 |
+
choices=[i.value.name for i in utils.Precision],
|
| 263 |
+
value=[i.value.name for i in utils.Precision],
|
| 264 |
interactive=True,
|
| 265 |
+
elem_id="filter-columns-precision",
|
| 266 |
)
|
| 267 |
+
filter_columns_size = gr.CheckboxGroup(
|
| 268 |
+
label="Model sizes (in billions of parameters)",
|
| 269 |
+
choices=list(utils.NUMERIC_INTERVALS.keys()),
|
| 270 |
+
value=list(utils.NUMERIC_INTERVALS.keys()),
|
| 271 |
+
interactive=True,
|
| 272 |
+
elem_id="filter-columns-size",
|
| 273 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
|
| 275 |
+
leaderboard_table = gr.components.Dataframe(
|
| 276 |
+
value=leaderboard_df[
|
| 277 |
+
[c.name for c in utils.fields(utils.AutoEvalColumn) if c.never_hidden]
|
| 278 |
+
+ shown_columns.value
|
| 279 |
+
+ [utils.AutoEvalColumn.dummy.name]
|
| 280 |
+
].sort_values(by="Overall Humanlike %", ascending=False),
|
| 281 |
+
headers=[c.name for c in utils.fields(utils.AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
| 282 |
+
datatype=utils.TYPES,
|
| 283 |
+
elem_id="leaderboard-table",
|
| 284 |
+
interactive=False,
|
| 285 |
+
visible=True,
|
| 286 |
+
column_widths=["33%", "33%"]
|
| 287 |
+
)
|
| 288 |
|
| 289 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 290 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 291 |
+
value=original_df[utils.COLS],
|
| 292 |
+
headers=utils.COLS,
|
| 293 |
+
datatype=utils.TYPES,
|
| 294 |
+
visible=False,
|
| 295 |
+
)
|
| 296 |
+
search_bar.submit(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
update_table,
|
| 298 |
[
|
| 299 |
hidden_leaderboard_table_for_search,
|
|
|
|
| 305 |
search_bar,
|
| 306 |
],
|
| 307 |
leaderboard_table,
|
|
|
|
| 308 |
)
|
| 309 |
+
# for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility]:
|
| 310 |
+
for selector in [shown_columns, filter_columns_precision, filter_columns_size, deleted_models_visibility]:
|
| 311 |
+
selector.change(
|
| 312 |
+
update_table,
|
| 313 |
+
[
|
| 314 |
+
hidden_leaderboard_table_for_search,
|
| 315 |
+
shown_columns,
|
| 316 |
+
#filter_columns_type,
|
| 317 |
+
filter_columns_precision,
|
| 318 |
+
filter_columns_size,
|
| 319 |
+
deleted_models_visibility,
|
| 320 |
+
search_bar,
|
| 321 |
+
],
|
| 322 |
+
leaderboard_table,
|
| 323 |
+
queue=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
|
| 326 |
+
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
| 327 |
+
gr.Markdown(about.LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
|
|
|
| 328 |
|
| 329 |
+
with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
| 330 |
+
with gr.Column():
|
| 331 |
+
with gr.Row():
|
| 332 |
+
gr.Markdown(about.EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 333 |
+
|
| 334 |
+
with gr.Column():
|
| 335 |
+
with gr.Accordion(
|
| 336 |
+
f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
|
| 337 |
+
open=False,
|
| 338 |
+
):
|
| 339 |
+
with gr.Row():
|
| 340 |
+
finished_eval_table = gr.components.Dataframe(
|
| 341 |
+
value=finished_eval_queue_df,
|
| 342 |
+
headers=utils.EVAL_COLS,
|
| 343 |
+
datatype=utils.EVAL_TYPES,
|
| 344 |
+
row_count=5,
|
| 345 |
+
)
|
| 346 |
+
with gr.Accordion(
|
| 347 |
+
f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
|
| 348 |
+
open=False,
|
| 349 |
+
):
|
| 350 |
+
with gr.Row():
|
| 351 |
+
running_eval_table = gr.components.Dataframe(
|
| 352 |
+
value=running_eval_queue_df,
|
| 353 |
+
headers=utils.EVAL_COLS,
|
| 354 |
+
datatype=utils.EVAL_TYPES,
|
| 355 |
+
row_count=5,
|
| 356 |
+
)
|
| 357 |
+
|
| 358 |
+
with gr.Accordion(
|
| 359 |
+
f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
| 360 |
+
open=False,
|
| 361 |
+
):
|
| 362 |
+
with gr.Row():
|
| 363 |
+
pending_eval_table = gr.components.Dataframe(
|
| 364 |
+
value=pending_eval_queue_df,
|
| 365 |
+
headers=utils.EVAL_COLS,
|
| 366 |
+
datatype=utils.EVAL_TYPES,
|
| 367 |
+
row_count=5,
|
| 368 |
+
)
|
| 369 |
+
with gr.Row():
|
| 370 |
+
gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
|
| 371 |
|
| 372 |
+
with gr.Row():
|
| 373 |
+
with gr.Column():
|
| 374 |
+
model_name_textbox = gr.Textbox(label="Model name")
|
| 375 |
+
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
| 376 |
+
model_type = gr.Dropdown(
|
| 377 |
+
choices=[t.to_str(" : ") for t in utils.ModelType if t != utils.ModelType.Unknown],
|
| 378 |
+
label="Model type",
|
| 379 |
+
multiselect=False,
|
| 380 |
+
value=None,
|
| 381 |
+
interactive=True,
|
| 382 |
+
)
|
| 383 |
|
| 384 |
+
with gr.Column():
|
| 385 |
+
precision = gr.Dropdown(
|
| 386 |
+
choices=[i.value.name for i in utils.Precision if i != utils.Precision.Unknown],
|
| 387 |
+
label="Precision",
|
| 388 |
+
multiselect=False,
|
| 389 |
+
value="float16",
|
| 390 |
+
interactive=True,
|
| 391 |
+
)
|
| 392 |
+
weight_type = gr.Dropdown(
|
| 393 |
+
choices=[i.value.name for i in utils.WeightType],
|
| 394 |
+
label="Weights type",
|
| 395 |
+
multiselect=False,
|
| 396 |
+
value="Original",
|
| 397 |
+
interactive=True,
|
| 398 |
+
)
|
| 399 |
+
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
| 400 |
|
| 401 |
+
submit_button = gr.Button("Submit Eval")
|
| 402 |
+
submission_result = gr.Markdown()
|
| 403 |
+
submit_button.click(
|
| 404 |
+
submit.add_new_eval,
|
| 405 |
+
[
|
| 406 |
+
model_name_textbox,
|
| 407 |
+
base_model_name_textbox,
|
| 408 |
+
revision_name_textbox,
|
| 409 |
+
precision,
|
| 410 |
+
weight_type,
|
| 411 |
+
model_type,
|
| 412 |
+
],
|
| 413 |
+
submission_result,
|
| 414 |
+
)
|
| 415 |
|
| 416 |
+
with gr.Row():
|
| 417 |
+
with gr.Accordion("📙 Citation", open=False):
|
| 418 |
+
citation_button = gr.Textbox(
|
| 419 |
+
value=about.CITATION_BUTTON_TEXT,
|
| 420 |
+
label=about.CITATION_BUTTON_LABEL,
|
| 421 |
+
lines=20,
|
| 422 |
+
elem_id="citation-button",
|
| 423 |
+
show_copy_button=True,
|
| 424 |
+
)
|
| 425 |
+
except Exception as e:
|
| 426 |
+
print(e)
|
| 427 |
|
| 428 |
(
|
| 429 |
finished_eval_queue_df,
|
src/backend/model_operations.py
CHANGED
|
@@ -35,7 +35,7 @@ import spacy_transformers
|
|
| 35 |
import subprocess
|
| 36 |
|
| 37 |
# Run the command to download the spaCy model
|
| 38 |
-
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_lg"], check=True)
|
| 39 |
# subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True)
|
| 40 |
# subprocess.run(["pip", "install", "spacy-transformers"], check=True)
|
| 41 |
# subprocess.run(["pip", "install", "curated-transformers"], check=True)
|
|
@@ -45,7 +45,7 @@ subprocess.run(["python", "-m", "spacy", "download", "en_core_web_lg"], check=Tr
|
|
| 45 |
try:
|
| 46 |
nlp1 = spacy.load("en_core_web_lg")
|
| 47 |
except OSError:
|
| 48 |
-
print("
|
| 49 |
|
| 50 |
# litellm.set_verbose=False
|
| 51 |
litellm.set_verbose=True
|
|
@@ -537,6 +537,7 @@ class EvaluationModel:
|
|
| 537 |
female_keyword = ["she", "her", "herself"]
|
| 538 |
#print(len(responses_df["Experiment"]))
|
| 539 |
for i in range(len(responses_df["Experiment"])):
|
|
|
|
| 540 |
print(i, "/", len(responses_df["Experiment"]))
|
| 541 |
# vote_1_1, vote_1_2, vote_1_3 = 0, 0, 0
|
| 542 |
# print()
|
|
@@ -592,7 +593,6 @@ class EvaluationModel:
|
|
| 592 |
output.append("Other")
|
| 593 |
else:
|
| 594 |
words = rs.split() # split the response into words
|
| 595 |
-
output = []
|
| 596 |
if any(word == word1 for word in words) and any(word == word2 for word in words):
|
| 597 |
output.append("Other")
|
| 598 |
else:
|
|
@@ -607,12 +607,41 @@ class EvaluationModel:
|
|
| 607 |
else:
|
| 608 |
output.append("Long")
|
| 609 |
else:
|
| 610 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 611 |
|
| 612 |
'''Exp4'''
|
| 613 |
|
| 614 |
elif responses_df["Experiment"][i] == "E4":
|
| 615 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 616 |
filtered_lines = [r.split('-', 1)[-1].strip() if '-' in r else r for r in filtered_lines]
|
| 617 |
rs = "\n".join(filtered_lines)
|
| 618 |
|
|
@@ -803,11 +832,8 @@ class EvaluationModel:
|
|
| 803 |
output.append("NA")
|
| 804 |
# print(output)
|
| 805 |
# exit()
|
| 806 |
-
|
| 807 |
-
|
| 808 |
-
# columns=["Experiment", "Question_ID", "Item", "Response", "Factor 2", "Simulate 1","Original_Coding","Coding"])
|
| 809 |
-
'''LLM'''
|
| 810 |
-
# print(len(output))
|
| 811 |
self.data = pd.DataFrame(list(
|
| 812 |
zip(responses_df["Experiment"], responses_df["Question_ID"], responses_df["Item"], responses_df["Response"],
|
| 813 |
responses_df["Factor 2"], responses_df["Stimuli 1"], output)),
|
|
|
|
| 35 |
import subprocess
|
| 36 |
|
| 37 |
# Run the command to download the spaCy model
|
| 38 |
+
# subprocess.run(["python", "-m", "spacy", "download", "en_core_web_lg"], check=True)
|
| 39 |
# subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"], check=True)
|
| 40 |
# subprocess.run(["pip", "install", "spacy-transformers"], check=True)
|
| 41 |
# subprocess.run(["pip", "install", "curated-transformers"], check=True)
|
|
|
|
| 45 |
try:
|
| 46 |
nlp1 = spacy.load("en_core_web_lg")
|
| 47 |
except OSError:
|
| 48 |
+
print("Can not load spacy model")
|
| 49 |
|
| 50 |
# litellm.set_verbose=False
|
| 51 |
litellm.set_verbose=True
|
|
|
|
| 537 |
female_keyword = ["she", "her", "herself"]
|
| 538 |
#print(len(responses_df["Experiment"]))
|
| 539 |
for i in range(len(responses_df["Experiment"])):
|
| 540 |
+
|
| 541 |
print(i, "/", len(responses_df["Experiment"]))
|
| 542 |
# vote_1_1, vote_1_2, vote_1_3 = 0, 0, 0
|
| 543 |
# print()
|
|
|
|
| 593 |
output.append("Other")
|
| 594 |
else:
|
| 595 |
words = rs.split() # split the response into words
|
|
|
|
| 596 |
if any(word == word1 for word in words) and any(word == word2 for word in words):
|
| 597 |
output.append("Other")
|
| 598 |
else:
|
|
|
|
| 607 |
else:
|
| 608 |
output.append("Long")
|
| 609 |
else:
|
| 610 |
+
if len(words) > 1:
|
| 611 |
+
# joint the words using " "
|
| 612 |
+
word = " ".join(words)
|
| 613 |
+
if word.lower() == word1.lower():
|
| 614 |
+
if len(word1) > len(word2):
|
| 615 |
+
output.append("Long")
|
| 616 |
+
else:
|
| 617 |
+
output.append("Short")
|
| 618 |
+
elif word.lower() == word2.lower():
|
| 619 |
+
if len(word1) > len(word2):
|
| 620 |
+
output.append("Short")
|
| 621 |
+
else:
|
| 622 |
+
output.append("Long")
|
| 623 |
+
else:
|
| 624 |
+
output.append("Other")
|
| 625 |
+
else:
|
| 626 |
+
output.append("Other")
|
| 627 |
+
|
| 628 |
|
| 629 |
'''Exp4'''
|
| 630 |
|
| 631 |
elif responses_df["Experiment"][i] == "E4":
|
| 632 |
+
lines = rs.split("\n")
|
| 633 |
+
filtered_lines = []
|
| 634 |
+
if len(lines) > 1:
|
| 635 |
+
for r in lines[1:]:
|
| 636 |
+
if ':' in r:
|
| 637 |
+
filtered_lines.append(r.split(':', 1)[-1].strip())
|
| 638 |
+
else:
|
| 639 |
+
filtered_lines.append(r)
|
| 640 |
+
filtered_lines.insert(0, lines[0])
|
| 641 |
+
else:
|
| 642 |
+
filtered_lines = lines
|
| 643 |
+
print(filtered_lines)
|
| 644 |
+
|
| 645 |
filtered_lines = [r.split('-', 1)[-1].strip() if '-' in r else r for r in filtered_lines]
|
| 646 |
rs = "\n".join(filtered_lines)
|
| 647 |
|
|
|
|
| 832 |
output.append("NA")
|
| 833 |
# print(output)
|
| 834 |
# exit()
|
| 835 |
+
'''LLM'''
|
| 836 |
+
print(len(output))
|
|
|
|
|
|
|
|
|
|
| 837 |
self.data = pd.DataFrame(list(
|
| 838 |
zip(responses_df["Experiment"], responses_df["Question_ID"], responses_df["Item"], responses_df["Response"],
|
| 839 |
responses_df["Factor 2"], responses_df["Stimuli 1"], output)),
|