Spaces:
Running
Running
Swap model to 'jinaai/jina-reranker-m0'
Browse filesAdded new classifier funktion to work with "simple" AutoModel.compute_score instead of zero-shot-pipeline
app.py
CHANGED
@@ -6,9 +6,16 @@ from transformers import pipeline
|
|
6 |
logger = logging.getLogger("gradio_test_001")
|
7 |
logger.setLevel(logging.INFO)
|
8 |
logging.debug("Starting logging for gradio_test_001.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
classifier = pipeline("zero-shot-classification",
|
11 |
-
|
12 |
|
13 |
# sequence_to_classify = "one day I will see the world"
|
14 |
# candidate_labels = ['travel', 'cooking', 'dancing']
|
@@ -16,12 +23,6 @@ classifier = pipeline("zero-shot-classification",
|
|
16 |
# 'doc_type.Scheme', 'content_type.Alt', 'content_type.Krypto',
|
17 |
# 'content_type.Karte', 'content_type.Banking', 'content_type.Reg',
|
18 |
# 'content_type.Konto']
|
19 |
-
categories = [
|
20 |
-
"Legal", "Specification", "Facts and Figures",
|
21 |
-
"Publication", "Payment Scheme",
|
22 |
-
"Alternative Payment Systems", "Crypto Payments",
|
23 |
-
"Card Payments", "Banking", "Regulations", "Account Payments"
|
24 |
-
]
|
25 |
|
26 |
def transform_output(res: dict) -> list:
|
27 |
return list(
|
@@ -53,13 +54,36 @@ def clf_text(txt: str | list[str]):
|
|
53 |
# 'scores': [0.9938651323318481, 0.0032737774308770895, 0.002861034357920289],
|
54 |
# 'sequence': 'one day I will see the world'}
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
def my_inference_function(name):
|
58 |
return "Hello " + name + "!"
|
59 |
|
60 |
gradio_interface = gradio.Interface(
|
61 |
# fn = my_inference_function,
|
62 |
-
fn = clf_text,
|
|
|
63 |
inputs = "text",
|
64 |
outputs = gradio.JSON()
|
65 |
)
|
|
|
6 |
logger = logging.getLogger("gradio_test_001")
|
7 |
logger.setLevel(logging.INFO)
|
8 |
logging.debug("Starting logging for gradio_test_001.")
|
9 |
+
categories = [
|
10 |
+
"Legal", "Specification", "Facts and Figures",
|
11 |
+
"Publication", "Payment Scheme",
|
12 |
+
"Alternative Payment Systems", "Crypto Payments",
|
13 |
+
"Card Payments", "Banking", "Regulations", "Account Payments"
|
14 |
+
]
|
15 |
+
logging.debug("Categories to classify: " + repr(categories))
|
16 |
|
17 |
+
# classifier = pipeline("zero-shot-classification",
|
18 |
+
# model="facebook/bart-large-mnli")
|
19 |
|
20 |
# sequence_to_classify = "one day I will see the world"
|
21 |
# candidate_labels = ['travel', 'cooking', 'dancing']
|
|
|
23 |
# 'doc_type.Scheme', 'content_type.Alt', 'content_type.Krypto',
|
24 |
# 'content_type.Karte', 'content_type.Banking', 'content_type.Reg',
|
25 |
# 'content_type.Konto']
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
def transform_output(res: dict) -> list:
|
28 |
return list(
|
|
|
54 |
# 'scores': [0.9938651323318481, 0.0032737774308770895, 0.002861034357920289],
|
55 |
# 'sequence': 'one day I will see the world'}
|
56 |
|
57 |
+
from transformers import AutoModel
|
58 |
+
# comment out the flash_attention_2 line if you don't have a compatible GPU
|
59 |
+
model = AutoModel.from_pretrained(
|
60 |
+
'jinaai/jina-reranker-m0',
|
61 |
+
torch_dtype="auto",
|
62 |
+
trust_remote_code=True,
|
63 |
+
# attn_implementation="flash_attention_2"
|
64 |
+
)
|
65 |
+
|
66 |
+
def clf_jina(txt: str | list[str]):
|
67 |
+
# construct sentence pairs
|
68 |
+
# text_pairs = [[query, doc] for doc in documents]
|
69 |
+
text_pairs = [[cat, txt] for cat in categories]
|
70 |
+
scores = model.compute_score(text_pairs, max_length=1024, doc_type="text")
|
71 |
+
return list(
|
72 |
+
sorted(
|
73 |
+
zip(categories, scores),
|
74 |
+
key=lambda tpl: tpl[1],
|
75 |
+
reverse=True
|
76 |
+
)
|
77 |
+
)
|
78 |
+
|
79 |
|
80 |
def my_inference_function(name):
|
81 |
return "Hello " + name + "!"
|
82 |
|
83 |
gradio_interface = gradio.Interface(
|
84 |
# fn = my_inference_function,
|
85 |
+
# fn = clf_text,
|
86 |
+
clf_jina,
|
87 |
inputs = "text",
|
88 |
outputs = gradio.JSON()
|
89 |
)
|