Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import uuid
|
2 |
+
import chromadb
|
3 |
+
from langchain.vectorstores import Chroma
|
4 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
+
from langchain.retrievers import ContextualCompressionRetriever
|
6 |
+
from langchain.retrievers.document_compressors import CrossEncoderReranker
|
7 |
+
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
# Initialize embedding model
|
11 |
+
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
12 |
+
|
13 |
+
# Initialize ChromaDB client and collection
|
14 |
+
chroma_client = chromadb.PersistentClient(path="./chroma_db")
|
15 |
+
vectorstore = Chroma(
|
16 |
+
client=chroma_client,
|
17 |
+
collection_name="text_collection",
|
18 |
+
embedding_function=embedding_model,
|
19 |
+
)
|
20 |
+
|
21 |
+
# Initialize reranker
|
22 |
+
reranker = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-base")
|
23 |
+
compressor = CrossEncoderReranker(model=reranker, top_n=5)
|
24 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 10}) # Retrieve 2k initially
|
25 |
+
compression_retriever = ContextualCompressionRetriever(
|
26 |
+
base_compressor=compressor, base_retriever=retriever
|
27 |
+
)
|
28 |
+
|
29 |
+
def add_text_to_db(text):
|
30 |
+
"""
|
31 |
+
Add a piece of text to the vector database.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
text (str): The text to add.
|
35 |
+
|
36 |
+
Returns:
|
37 |
+
str: Confirmation message.
|
38 |
+
"""
|
39 |
+
if not text or not text.strip():
|
40 |
+
return "Error: Text cannot be empty."
|
41 |
+
|
42 |
+
# Generate unique ID
|
43 |
+
doc_id = str(uuid.uuid4())
|
44 |
+
|
45 |
+
# Add text to vectorstore
|
46 |
+
vectorstore.add_texts(
|
47 |
+
texts=[text],
|
48 |
+
metadatas=[{"text": text}],
|
49 |
+
ids=[doc_id]
|
50 |
+
)
|
51 |
+
|
52 |
+
return f"Text added successfully with ID: {doc_id}"
|
53 |
+
|
54 |
+
def search_similar_texts(query, k):
|
55 |
+
"""
|
56 |
+
Search for the top k similar texts in the vector database and rerank them.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
query (str): The search query.
|
60 |
+
k (int): Number of results to return.
|
61 |
+
|
62 |
+
Returns:
|
63 |
+
str: Formatted search results with similarity scores.
|
64 |
+
"""
|
65 |
+
if not query or not query.strip():
|
66 |
+
return "Error: Query cannot be empty."
|
67 |
+
|
68 |
+
if not isinstance(k, int) or k < 1:
|
69 |
+
return "Error: k must be a positive integer."
|
70 |
+
|
71 |
+
# Retrieve and rerank
|
72 |
+
retriever.search_kwargs["k"] = max(k * 2, 10) # Retrieve 2k or at least 10
|
73 |
+
compressor.top_n = k # Rerank to top k
|
74 |
+
docs = compression_retriever.get_relevant_documents(query)
|
75 |
+
|
76 |
+
if not docs:
|
77 |
+
return "No results found."
|
78 |
+
|
79 |
+
# Format results
|
80 |
+
results = []
|
81 |
+
for i, doc in enumerate(docs[:k]): # Ensure we return at most k
|
82 |
+
text = doc.metadata.get("text", "No text available")
|
83 |
+
score = doc.metadata.get("score", 0.0) # Reranker score
|
84 |
+
results.append(f"Result {i+1}:\nText: {text}\nScore: {score:.4f}\n")
|
85 |
+
|
86 |
+
return "\n".join(results) or "No results found."
|
87 |
+
|
88 |
+
# Gradio interface
|
89 |
+
with gr.Blocks() as demo:
|
90 |
+
gr.Markdown("# Semantic Search Pipeline")
|
91 |
+
|
92 |
+
with gr.Row():
|
93 |
+
with gr.Column():
|
94 |
+
gr.Markdown("## Add Text to Database")
|
95 |
+
text_input = gr.Textbox(label="Enter text to add")
|
96 |
+
add_button = gr.Button("Add Text")
|
97 |
+
add_output = gr.Textbox(label="Result")
|
98 |
+
|
99 |
+
with gr.Column():
|
100 |
+
gr.Markdown("## Search Similar Texts")
|
101 |
+
query_input = gr.Textbox(label="Enter search query")
|
102 |
+
k_input = gr.Number(label="Number of results (k)", value=5, precision=0)
|
103 |
+
search_button = gr.Button("Search")
|
104 |
+
search_output = gr.Textbox(label="Search Results")
|
105 |
+
|
106 |
+
# Button actions
|
107 |
+
add_button.click(
|
108 |
+
fn=add_text_to_db,
|
109 |
+
inputs=text_input,
|
110 |
+
outputs=add_output
|
111 |
+
)
|
112 |
+
search_button.click(
|
113 |
+
fn=search_similar_texts,
|
114 |
+
inputs=[query_input, k_input],
|
115 |
+
outputs=search_output
|
116 |
+
)
|
117 |
+
|
118 |
+
# Launch Gradio app
|
119 |
+
if __name__ == "__main__":
|
120 |
+
demo.launch()
|